Posts

Exploring Capabilities of New Products Webinar Recap

Interface’s latest ForceLeaders webinar, Exploring Capabilities of New Measurement Products, provides an overview of 20 new products with details on specifications, features, and sample applications. The recorded event introduces several new measurement products across various categories, including load cells, torque transducers, multi-axis sensors, instrumentation, accessories, and systems.

Brian Peters, VP of Global Sales at Interface, and Ken Bishop, Senior Director of Custom Solutions, detailed the various product categories and provided essential testing tips to consider for each product. They highlighted capabilities, different use cases, and applications for each product.

Interface’s expanding catalog has over 40,000 SKUs across load cells, torque, instrumentation, calibration systems, and accessories. New products are continuously added, driven by customer needs and industry trends like digitalization, complete systems, multi-axis sensors, submersibles, and wireless connectivity. The following is a recap of some of the products detailed during this comprehensive review.

New Load Cell Models

Ken introduced several new load cell models like the stainless steel ITCA series, which are available with IP67 protection and have capacities ranging from 1 to 150 metric tons (MT) (2.2K to 330.6K lbf). Typical applications are structural testing, jack load and cable tension monitoring, material test machine feedback, and press load monitoring. The ICPA compression model ranges from 2 to 1000 MT (4.4K to 2204K lbf) in a smaller package with optional dome caps and mounting bases. The IO link-enabled 1200 LowProfile Load Cell models for optimizing machine integration and process controls are ideal for the growing digital network environments. Additional products detailed in this section include the A4200 and A4600 WeighCheck™ Load Cells, the new SSLP Stainless Steel Low Profile Universal Load Cell, and our pillow block load cells PBLC1 Pillow Block Load Bearing Load CellPBLC2 Pillow Block Load Bearing Load Cell and PBLC3 Pillow Block Load Bearing Load Cell.

Additions to ATEX Load Cell Line

Two new ATEX-approved load cells are reviewed during the event, including a rod-end style 3450 series and a 3411 Intrinsically Safe Compression-Only LowProfile® Load Cell with an internally amplified 4-20 mA output, loop-powered. Appropriate hazardous environment classifications must be reviewed carefully for proper installation.

New Torque Transducers

During the webinar, Brian introduced the lower-cost T18 rotary torque sensor. This valuable transducer is contactless and suits various test stands without needing separate encoders. It’s a great sensor for testing anything that spins. The TSCF C-Face Flange Torque Transducer wired and non-rotating model allows torque and pass-through mounting on standard C-face motor frames for conveyors, pumps, and other systems. It is available in capacities from 288.5 lbf-in to 885 lbf-in (10 Nm to 100 Nm).

Multi-Axis Sensors

New multi-axis sensors, like the 2-axis AT-104, are valuable for combined reaction torque and axial force cable testing. Customers use this for low-range combined force and torque testing, off-axis friction characterization, and articulating component testing. The AT-105 is available in capacities from 100/2, 250/5, & 500/5 N/Nm (22.5/17.7, 56.2/44.3, & 112.4/44.3 lbf/lbf-in). It measures torque, speed, and force for bearing tests. A new 3-axis load cell, the 3AR Series Round 3-Axis Load Cells, has a high Z-axis capacity that matches the BX8 data logger well. The 6-axis 6ADF series incorporates a DIN mounting flange for robot arm integration.

Load Pins, Shackles and Tension Links

Interface’s expanded line of load pins, shackles, and tension links offers a range of standard and custom solutions with integrated wireless options. The new ILMP Standard Stainless Steel Load Load Pin is a great standard load pin, available from 1.1K lbf (500 kgs) to 3,307K lbf (1500 MT). They work well for lifting, rigging, and inline tension applications. Load pins can be fully customized to fit unique mounting requirements with options for redundant bridges or special connectors.

New Instrumentation

A range of new instrumentation is covered, like the multi-channel 9325 indicator with 2400 Hz sampling, software, and TEDS support. The battery-powered 4850 replaces a previous model for outdoor weighing applications. The multi-function JB1100 junction box sums 4 load cell channels and options for CAN bus, Bluetooth, and analog outputs. The compact IF500 Load Cell Simulator generates precision load cell simulation signals for field use. And the 9840C TEDS Read/Write Intelligent Indicator has coefficients for use with up to 20 load cells. Additional instrumentation highlighted during the technical seminar include the BSC1-HD Single Channel PC Interface Module with Analog Output, the BSC4D-BT Portable 4-channel Bluetooth Data Logger, and the various models of INF4 Two, Three, and Four Sensor Weight Transmitter and Indicator and INF1 Single Sensor Weight Transmitter and Indicator.

Accessories and System Offerings

Interface provides diverse accessories like bases, couplings and enclosures tailored to load cells and torque sensors. We also offer integrated systems that include sensors, data acquisition, software, displays and reporting for wireless devices, multi-axis sensors, torque testing, simulation, instrumentation calibration, and other applications. You can see the options covered in our Data AQ Pack Brochure. Customization services can modify standard products or build complete OEM solutions to customer requirements. Consider customized system development services from Interface for fully integrated deployments. It saves time and money.

The webinar concluded with a checklist of starter questions for planning testing projects covering the goals, measurements, cycles, environments, data usage, installation, connections, storage, and reporting requirements.

  • What are you measuring?
  • What are the number of cycles required in your test plan?
  • What is the environment for your project?
  • How will you use the measurement data?
  • What are the requirements for mounting and installation?
  • How will you be connecting your devices to instrumentation?
  • Where are you storing your data?
  • Will you need software to analyze your results?

Research Interface’s catalog of load cells, torque sensors, instrumentation, and accessories for models potentially fitting my application requirements. Be sure to consult Interface application engineers on recommendations for complete measurement solutions optimized for your specific use cases.

WATCH THE WEBINAR

The Wonderful World of Wireless Webinar Recap

Interface recently hosted an online technical seminar, The Wonderful World of Wireless, discussing cable-less sensor technologies.

The ForceLeaders event began with a quick highlight of the history of wireless, starting with Heinrich Hertz demonstrating the existence of electromagnetic waves in 1988 through the 21st-century developments of Wi-Fi, Bluetooth, plus 4G and 5G cellular networks.

These inventions have advanced test and measurement devices to the point where wireless sensors and instrumentation are commonplace. What does today and the future of wireless look like?

  • Extensive Wireless Components in the Lab
  • Network Connectivity and Cloud-Based Data (IoT)
  • Expanding Use for Different Environments
  • High-accuracy and Precision Measurement Capabilities
  • Enabling Advancements in Automation
  • Continuous Monitoring of Measurement Data
  • Safety and Alarm Systems Based on Key Measurements
  • Component Activation without Cables

During this technical discussion, Interface experts Keith Skidmore and Jason Graham detailed the benefits of using wireless components for test and measurement programs in addition to OEM products. The top five benefits of going wireless include:

  • Easier installation and maintenance
  • Reduced wiring costs and easier to integrate
  • Increased flexibility and scalability
  • Reduced risk of electrical interference and noise
  • Improved safety (no cables)

Sensor systems become significantly more flexible and adaptable by removing the need for physical wires. This translates to easier repositioning of existing sensors and seamlessly adding new ones without major infrastructure modifications. This wireless approach is particularly beneficial when traditional wiring is difficult or impractical. This includes:

Large-scale industrial applications: A sprawling factory floor or a vast agricultural field that requires wiring such expansive areas would be a logistical nightmare regarding cost and implementation. Wireless sensors eliminate this obstacle, allowing data collection across vast distances with minimal setup effort.

Monitoring moving or rotating machinery: Imagine trying to wire sensors onto a constantly spinning turbine or a robot arm in motion. The wires would be a tangled mess, prone to breakage and potentially hindering the machinery’s operation. Wireless sensors provide a clean and efficient solution, capturing valuable data without impeding the movement of the equipment. Interface details this with our system configuration using the BX6 during the webinar.

Remote or hard-to-reach locations: Whether it’s a sensor monitoring environmental conditions on a mountaintop or across the plains for oil field operations, reaching specific locations with wires can be impossible or prohibitively expensive. Wireless sensors bridge this gap, enabling data collection from even the most inaccessible places.

Interface offers wireless LowProfiles, Mini Load Cells, Load Shackles, and Torque Transducers. Interface has the experience and engineering capabilities to design most of our sensors for wireless use. Commonly used Interface wireless load cells are our WTS 1200 Standard Precision LowProfile® Wireless Load CellWTSTL Wireless Tension Link Load Cell, WTSLP Wireless Stainless Steel Load Pin and WTSSHK-D Wireless Crosby™ Load Shackle.

Specification Watch List for Wireless Components

  • Input Range
  • Sample Rate
  • Temperature Range
  • Temperature Errors
  • Linearity of Sensor or System
  • Environmental Rating
  • Battery Life and Power Supply
  • Compatible Output and Inputs of Every Component

Be sure to watch the event, and if you have any questions about the products Interface offers or need help selecting the right system components, contact us. We are here to help you get the right solution.

The event concluded with Interface wireless experts answering these top 10 frequently asked questions:

  1. What impacts the range of WTS?
  2. How reliable are the data results?
  3. What software is provided with the WTS devices?
  4. How many devices can operate on one radio channel?
  5. Can computer software gather data from many devices?
  6. What limits the devices’ radio frequency (RF) range?
  7. What frequency does the system operate on?
  8. Can wireless range extenders be used within the WTS network?
  9. Is the system point-to-point?
  10. What are the sampling rates of the transmitter modules?

Interface Wireless Telemetry System (WTS)

The Interface Wireless Telemetry System (WTS) offers more sensor placement and configuration flexibility. Components in wireless telemetry systems typically include sensors, transducers, instrumentation, communication modules, transmitters, displays, and printers. Use the Wireless Modular System Overview for more system details.

Read: Interface Wireless Telemetry System Review

Applications Using Interface Wireless Telemetry System Solutions

Crane Capacity Verification

Mobile Force System

Inflatable Space Habitat

Gantry Crane Weighing

Robotic Arm

Aircraft Engine Hoist

Airplane Jacking System

Patient Hoyer Lift

Road Bridge Lift Monitoring

Jib Crane Tension Monitoring

Waste Management Container Weighing

Interface Engineered Solutions for Lifting Webinar Recap

Everything from mechanical engineering designs, equipment materials, and the sensors used in lifting machinery is changing the concept of lifting today. Interface experts Keith Skidmore and Ken Bishop explore types of measurement products, applications, technical considerations, and tips for lifting use cases in the Interface recorded webinar Engineered Solutions for Lifting.

Sensors are central in lifting equipment to maintain safety, quality, compliance, and efficiency. Interface provides a useful product selection online resource for lifting applications. Go to the Lifting Solutions Guide.

Interface load cells can help prevent accidents by providing real-time feedback on the weight of the lifted load. The measurement data helps ensure the lifting machinery is not overloaded or unbalanced, leading to structural failure, tipping over, or injury. Sensor technologies improve quality control by ensuring products are lifted to the correct specifications.

Interface LowProfile Load Cells, Load Pins, Load Shackles, and Tension Links improve efficiency by automating the lifting process. For example, load cells can control the speed and movement of a lifting mechanism, ensuring that the load is lifted safely and efficiently. These measurement sensors can reduce costs by minimizing damage to equipment and products. By preventing overloads and ensuring that loads are lifted safely, load cell devices can extend the lifespan of equipment and prevent costly accidents.

In many industries, regulations require load cells for lifting applications to ensure compliance and overload protection. For example, the Occupational Safety and Health Administration (OSHA) requires the use of load cells in many lifting applications for monitoring and reporting.

Automation of lifting is on the rise. Using robotics and component activation is commonly designed into new equipment and retrofitting existing hardware. These features also provide valuable operating safety and alarm systems based on key measurements. Modernizing equipment to meet today’s and future use cases is important to operators and manufacturers of lifting equipment. This includes utilizing wireless components and using cloud-based data (IoT).

Lifting sensors are more commonly found in settings with high-temperature variances and exposure to extreme environmental conditions. The measurement solutions must withstand these variances while providing continuous monitoring capabilities. Today’s use cases require smaller load cells, like our beam load cells, while not sacrificing precision measurement.

Interface products are used for all types of lifting equipment, apparatus, and machines, including:

  • All Purpose Cranes
  • Patient Lifts and Medical Equipment
  • Drones with Lift and Carry Capabilities
  • Aircraft Lifts and Rigging
  • Lifting Gantry Systems and Mobile Gantry Cranes
  • Jib Cranes
  • Engine and Floor Cranes
  • Scaffold Runway Systems
  • Venue and Entertainment AV Equipment
  • Rigging Equipment
  • Pallet Movers
  • Elevators
  • Loaders and Bulldozers

During the webinar, Interface experts shared tips and best practices. Here is a quick summary of tips for lifting use cases.

Top Measurement Tips for Lifting Use Cases

TIP #1 Select the right force sensor. Factors to consider when selecting a force sensor include the maximum force it can measure, accuracy, weight, dimensions, and environmental conditions for use.

TIP #2 Proper installation will define your application’s success. It is important to install the force sensor correctly to ensure accurate measurements.

TIP #3 Calibrate the force sensor regularly, preferably once a year. Regularly run calibration-grade tests if the load cell is embedded into the lifting device.

TIP #4 Based on each use case, instrumentation can make all the difference in your program. For example, a data acquisition system collects force data to monitor the lifting process, identify potential problems, and generate reports.

TIP #5 Design the lifting system with safety in mind. Force measurement can improve the safety of lifting systems by preventing overloading, detecting imbalances in the load, and monitoring the condition of the lifting equipment.

Tune into the webinar to hear Keith Skidmore and Ken Bishop detail best practices, key considerations to identify stable and unstable lifting, and a thorough review of industry applications using Interface products.

Lifting Applications

Crane Capacity Verification

A customer wants to verify that their crane is strong enough to safely lift a heavy load at its rated maximum load capacity. A wireless solution is needed to avoid long cables and to have a faster installation time. Interface’s Model WTSATL Lightweight Wireless Tension Link Load Cell can measure the load’s maximum capacity. The WTS-RM1 Wireless Relay Output Receiver Modules can also trigger an alarm that can be set when the maximum capacity of weight/force has been reached. The data is transmitted and can be reviewed with the WTS-BS-1-HS Wireless Handheld Display or on the customer’s PC.

gantry crane lifting a heavy container

Gantry Crane Wireless Lifting for Heavy Containers

Gantry cranes are used for mobile and lifting applications in industrial and construction. A weighing system is needed to see if the gantry crane can lift heavy containers or loads, preventing crane failure or accidents. Interface’s WTSLP Wireless Stainless Steel Load Pins can be installed into the corners of the lifting mechanism of the gantry crane, where heavy-loaded containers are lifted and moved. The force results are then transmitted to the WTS-BS-1-HS Wireless Handheld Display for Single Transmitters and a connected computer using the WTS-BS-6 Wireless Telemetry Dongle Base Station.

Patient Lifting Device

In the medical field, sometimes it is necessary to weigh or transfer patients who are disabled and cannot walk. A Hoyer lift is used to move patients around. A manufacturer would like a force system to weigh disabled patients and see the maximum weight it can hold. Interface’s WTS 1200 Standard Precision LowProfile® Wireless Load Cell is attached to the top of the Hoyer lift. The force results are wirelessly transmitted to the medical laptop through the WTS-BS-6 Wireless Telemetry Dongle Base Station.

Find additional productions and solutions in our Lifting Solutions Overview.

Lifting Solutions Brochure

Engineered Solutions for Lifting Webinar

Interface’s technical webinar Engineered Solutions for Lifting details measurement devices used in lifting equipment, machines, and vehicles to improve operations and safety. Interface load cells and instrumentation are used to operate cranes, hoist heavy objects, and measure forces in infrastructure projects. Interface experts answer how load cells are used in safety monitoring for lifting equipment. Learn about Interface sensor products suited for integration into existing equipment and test and measurement projects.

Demystifying Specifications Webinar Recap

Interface recently hosted an online technical seminar that detailed product specification basics, key values, terms to know, how to read a datasheet, what specs matter most in force measurement applications.

For Interface, specifications are detailed descriptions that outline the characteristics, features, and qualities of our products, systems, or services. Product specifications are included on all datasheets, detailing product performance, capabilities, capacities and dimensions. Products have internal specifications that are tested against during manufacture, typically with full traceability.

Throughout the webinar Demystifying Specifications, Brian Peters and Jeff White offered important tips on what to consider for high-speed, durability, precision, and specialty product requirements. They highlighted what to look for on the product datasheet when choosing a load cell or instrumentation device. This includes variables in specifications related to expected performance of transducers and instrumentation based on frequency, environment, and other critical testing application considerations. They also answered the most frequently asked questions of our applications engineers related to specifications and datasheets.

Demystifying Specifications Webinar Topics

  • Specification Basics
  • Specifications and Values in Force Measurement
  • Decoding Datasheets
  • Detailing Product Specs for Load Cells
  • Detailing Product Specs for Instrumentation
  • Detailing Product Specs for Specialty Sensor Products
  • Applying Specifications to Applications
  • Specification Tips
  • FAQs and Resources

The entire webinar, Demystifying Specifications, is now available to watch online.

Four Types of Specifications

Interface provides four types of specifications for every product we make and sell: functional, technical, performance and design.

  1. Functional specifications describe the intended functionality or behavior of a product, whether a sensor, instrument or accessory.  They outline what the product or system should do and how it should perform its tasks. Functional specifications typically include applications, product requirements, and expected use case results.
  2. Technical specifications provide detailed information about mechanical aspects of a product or system. They may include information about the materials, dimensions, technical standards, performance criteria, capacities, and other technical details necessary for the design, development, and implementation of the product or system
  3. Performance specifications define the performance requirements and criteria that a product or system must meet. This is critical in force and measurement. They specify the desired performance levels, such as speed, accuracy, capacity, efficiency, reliability, or other measurable attributes. Performance can be defined by a specific range, with maximum standards for peak performance. Performance specifications help ensure that the product or system meets the desired test and measurement goals.
  4. Design specifications outline the specific design criteria and constraints for a product or system. These specs provide guidelines and requirements related to the visual appearance and can also reference the model details found in a product’s engineering CAD STEP file. 

Specifications Commonly Found on Interface Product Datasheets

  • Models based on Form Factor
  • Measuring Range (Capacity)
  • Measurement Units: US (lbf) Metric (N, kN)
  • Accuracy (Max Error)
  • Temperature: Operating Range, Compensated Range, Effect on Zero and Effect on Output (Span)
  • Electrical: Rated Output, Excitation Voltage, Bridge Resistance, Zero Balance and Insulation Resistance
  • Mechanical: Safe Overload, Deflection, Optional Base, Natural Frequency, Weight, Calibration and Material
  • Dimensions
  • Options
  • Connector Options
  • Accessories

Key Force Measurement Specification Terms to Know

Nonlinearity: The algebraic difference between OUTPUT at a specific load and the corresponding point on the straight line drawn between minimum load and maximum load.  Normally expressed in units of %FS.

Hysteresis: The algebraic difference between output at a given load descending from maximum load and output at the same load ascending from minimum load. Normally expressed in units of %FS.

Static Error Band (SEB): The band of maximum deviations of the ascending and descending calibration points from a best fit line through zero output. It includes the effects of nonlinearity, hysteresis, and non-return to minimum load. Expressed in units of %FS.  SEB Output is a best fit straight line output at capacity.

Nonrepeatability: The maximum difference between output readings for repeated loadings under identical loading and environmental conditions.  Expressed in units of %RO. In practice there are many factors that affect repeatability that ARE NOT included in the nonrepeatability specification.

Creep:  The change in load cell signal occurring with time, while under load and with all environmental conditions and other variables remaining constant. Expressed as % applied load over specific time interval. Logarithmic effect that is also symmetric on load removal. Stated specifications may differ and are not for the same time interval.

Eccentric and Side Load Sensitivity: Eccentric Load – Any load applied parallel to but not concentric with the primary axis. Results in moment load. Side Load – Any load at the point of axial load application at 90° to the primary axis. Error influences are reported in terms % and %/in.

Watch the event to understand why these specification details matter and some of the important variables to consider when comparing, using or troubleshooting different measurement products.  During the event, we provided a list of resources that are helpful when looking for specification information or definitions. The complete list is below.

ADDITIONAL RESOURCES

Interface Product Selection Guides

Interface Technical Support Information and Troubleshooting

Interface Load Cell Field Guide (Free Copy)

Interface Installation Guides and Operation Manuals

Interface Software and Drivers

Interface Product Catalogs

Interface 101 Blog Series and InterfaceIQ Posts

Interface Industry Solutions and Applications

Interface Recorded Webinars

Demystifying Specifications Webinar

Interface’s technical force measurement webinar Demystifying Specifications details descriptions, terms, values and parameters found in product datasheets for load cells, torque transducers, instrumentation and specialty products. Learn from our experts what specifications need critical review, recommendations based on product categories, and the insider point of view on what is most important in terms of specifications for different use cases and tests.

Unlocking the Power of DAQ Webinar Recap

Interface hosted a technical seminar on the topic of data acquisition systems. With the demands for more data and faster processing with requirements to connect multiple devices in testing environments, there is an increasing need for high accuracy DAQ systems. Keith Skidmore and Dave Reardon detail the basics of DAQ, trends, products, software options and answer to questions in the webinar, Unlocking the Power of DAQ.

To start, a data acquisition (DAQ) system consists of hardware and software components designed to collect, process, and analyze data from various sources and convert it into digital format for further analysis and storage.

Components of DAQ Systems

  • Input:  Sensors (Ex: Force, Torque), Digital Signals (Ex: DIO, Counters), Timing Signals (Ex: IRIG, GPS) and Serial Streams (Ex: RS-232, RS-422)
  • Signal Conditioning Circuitry: Excitation, Amplifier, Voltage Offsets, and Filters
  • Analog-to-Digital Converters (ADC)
  • Digital-to-Analog Converters (DAC)
  • Hardware and Software for processing, analyzing, display and recording
  • Output Signal: prior to ADC, after DAC, or even after processing

Analog data acquisition systems acquire and process analog signals. Analog signals can include sensors that measure load, force, torque, strain, temperature, pressure, voltage, current, and many other physical or electrical qualities.  Digital data acquisition systems acquire and process digital signals. Digital signals can include on and off states, counters, serial streams, text data, video, GPS signals, and other advanced options.

 Key Considerations for DAQ Systems

  • Features
    • Supported range of inputs mV/V, VDC, mA, partial bridge, encoder, pulse, frequency
    • Included software and related functionality
  • Form factor
    • Bench top, rack mount, portable, ruggedized and others
  • Sample rate
  • Connectivity
  • Power supply
  • Channel count and cost per channel

Interface DAQ Products

Interface offers a range of solutions for DAQ systems. The top products for DAQ include:

During the webinar, Keith and Dave detail a series of product groups for the Interface Data AQ Packs.

Data AQ Pack Brochure

Watch the webinar and learn more about product options, software, applications and best practice tips.

Richard F. Caris Charitable Trust II Congratulates ISEF 2023 Winners

The world’s largest science and engineering competition for pre-college students, the 2023 Regeneron International Science and Engineering Fair (Regeneron ISEF), took place in Dallas, Texas, May 14 – 19. Supporting the Society for Science and ISEF, the Richard F. Caris Charitable Trust II is a proud sponsor of this critical society and experience that focuses on the ingenuity students in STEM.

Richard F. Caris is the founder of Interface, Inc., a leader in force measurement solutions. The company started 55 years ago and continues to engineer and supply vital sensor technologies, including our renowned precision load cells. These precisoin measurement devices are used for testing and validation of global inventions across all industries, from robotics to space exploration.

Regeneron ISEF offers a prestigious platform that gathers the most exceptional young scientists and engineers from across the globe. This renowned competition serves as a catalyst for Regeneron and the Society for Science to champion and nurture the upcoming generation of talented STEM innovators. These brilliant minds not only generate groundbreaking ideas but also serve as catalysts for the transformative change required to enhance the well-being of individuals, society, and the planet.

By supporting and investing in these bright young minds, Regeneron ISEF and the sponsorship by Richard F. Caris Charitable Trust II continues to foster innovation and drive positive impact on a global scale.

Congratulations Physics and Astronomy, sponsored by Richard F. Caris Charitable Trust II Winners

Alexander Plekhanov from Portland, OR

Kaitlyn Wang from San José, CA

Kaitlyn Wang won first place for the entire ISEF competition and received the $75,000 George D. Yancopoulos Innovator Award for finding an efficient way to identify certain exoplanets that orbit very closely around their stars. As detailed by the ISEF announcement, previous techniques used to detect these ultra-short-period planets required enormous computational power but were not as effective at identifying these planets. Kaitlyn surmounted that problem by creating a special algorithm that runs on cheap hardware and results in much faster and higher-precision findings. Using her research, she says she found the smallest of these planets ever discovered.

Interface, on behalf of the Richard F. Caris Charitable Trust II, would like to congratulate Kaitlyn and Alexander, along with all the participants and winners of ISEF 2023. Interface supports the Society for Science and ISEF by also providing our Load Cell Field Guide, an essential resource for future scientists and engineers that use test and measurement to validate their inventions and experiments.

Full list of all award-winning ISEF 2023 Finalists

Full list of Special Award ISEF 2023 Finalists

Visit the ISEF 2023 virtual fair to learn more about the project and the finalists.

Webinar Recap of Taking Measure of Miniature Load Cells

Interface’s first event of 2023 focuses on a growing line of miniaturized load cells and torque transducers.  The presentation by Brian Peters and Justin Walker emphasizes that though the form factor is small for Interface Minis, accuracy and measurement capacities are high.

Through out the event Taking Measure of Miniature Load Cells, Interface product experts detailed specific applications and use cases for miniature force measurement devices. Interface’s Minis are commonly used across all types of industries from medical device testing to embedded sensors in machines to provide real-time system health and performance data.

Watch the recorded event here.

After inventing the LowProfile load cell more than five and half decades ago, Interface engineers and founder first introduced the miniature s-type load cells in 1974.  How does Interface classify a miniature load cell?

  • Miniature load cells are engineered for use in applications for light touch, light weight, or for less space. 
  • Miniature load cells provide exceedingly accurate measurements similar to our full-size load cells with proprietary alloy strain gages. 
  • Miniature load cells can measure both tension and compression.
  • Miniature load cells and torque transducers are available in a wide range of capacities and models.
  • Miniature load cells are not just small in physical size, they also have a range to test minimal forces with extremely high accuracy
  • Interface defines our trademarked Mini™ Load Cells as anything that isn’t a low profile load cell

The team also covered new products that provide extremely high accuracy measurement in very small envelopes, including our new SuperSC, ConvexBT, the popular WMC and MRT, along with our new Pillow Block Load Cells. They also highlight some of the special options, including wireless and submersible products. Throughout the recorded event, products were introduced to showcase the range and options available for miniature load cells and torque transducers, including:

  • Miniature beam load cells
  • Miniature load button load cells
  • Miniature load washers
  • Miniature tension and compression, compression only load cells
  • S-type load cells
  • Miniature sealed stainless steel load cells
  • Column rod end miniature load cells
  • Torque transducer miniatures

You can watch the entire event online on the Interface YouTube Channel. You don’t want to miss out on the answers to our most frequently asked questions, like do you can you calibrate a load button or can you make a mini load cell without cables (wireless)?  They also give you the details on the smallest measurement capacity for a miniature load cell and the largest measurement capacity for an Interface miniature. Can you imagine a million lbf mini? Tune in to learn more and a special section on do and don’t tips.

Additional Resources

Miniature Torque Transducers 101

New Technical White Paper Analyzes SuperSC S-Type Miniature Load Cells

Interface Introduces SuperSC S-Type Miniature Load Cell

Superior S-Types Webinar Recap and New SuperSC

MTFS Miniature Tension Force Load Cell

WMCF Miniature Sealed Stainless Steel Load Cell

WMCP Overload Protected Stainless Steel Miniature Load Cell with Male Threads