Posts

Load Cell Test Stands 101

Load cell test stands are important devices for manufacturers and testing engineers who need to measure the force or torque applied to an object, test specimen, or product. They are typically made up of a frame, one or more load cells, software, and data acquisition instrumentation.

How do load cell test stands work?

Interface load cells are sensors that convert force into an electrical signal. This signal is then amplified and sent to the test stand’s software, which displays and records the force data. The software can also be used to control the test stand, such as setting the speed and duration of a test.

Test stands are used to hold the test object or device and apply force or torque to it. They should be designed to provide a stable and consistent testing environment. It is typically designed to accommodate a wide range of objects of different sizes and shapes. Often a reconfigurable structure to adapt from test to test.

Test stands may have various components, such as a base or base plate, columns, a crosshead, and load introduction devices. Interface provides high-accuracy load cells, instrumentation and DAQ systems, software and accessories designed for use in various types of test stands.

What are the different types of load cell test stands?

There are two main types of load cell test stands: motorized and manual. Motorized test stands are more advanced and can be used for more demanding testing applications. They typically have features such as programmable speed and force control, as well as data logging capabilities. Manual test stands are less expensive and easier to use, but they are not as versatile as motorized test stands.

A test stand and a load frame are both mechanical structures used in materials testing, but they differ in their functions and designs.

The test stand can be a test bench or structure on a test bed plate. These assemblies are designed to rigidly hold an object while it is being subjected to external forces. These forces could be introduced from all angles and orientations and cover low cycle design limit to long duration fatigue cycle testing.

A load frame, on the other hand, is a machine that is specifically designed to apply and measure axial or torsion forces during material or small component testing.

Most Common Requirements for Load Cell Test Stands

Testing professionals, engineers and metrologists require a load cell test stand to perform accurate and precise measurements. The primary features of a test stand include:

  • High accuracy: The load cell test stand must be able to measure force or torque with a high degree of accuracy. This is important to ensure that the measurements are reliable and repeatable. Confidence in the data must be validated through accuracy of measurement.
  • Versatility: The load cell test stand must be able to be used for a variety of testing applications. Test lab professionals, engineers and metrologists need equipment that can perform a wide range of product and material tests. This also includes interchangeable sensors, depending on the capacity and type of test, such as tension or fatigue.
  • Repeatability: The load cell test stand must be able to repeat measurements with high precision. This is important to verify the accuracy of measurements over time, through continuous use and even high cycle counts.
  • Safety: The load cell test stand must be safe to use, even when testing products under high loads. Measurements are not compromised by safety concerns.
  • Ease of use: The load cell test stand must be easy to use, even for users with limited technical knowledge. This is important for testing professionals to be able to quickly and easily set up and use the test stand.

Load cell test stand requirements can vary based on the type of testing projects and materials. Many test stands are standard; however, complex testing programs often require custom test stands that are designed and calibrated for specific use cases. Interface provide load cells, instrumentation and software designed for use in test stands.

Test Stand Sensor Considerations

  • Ensure sensors are properly sized for capacity, cycle, and extraneous load considerations.
  • Multiple bridges are good feature for redundancy and data validation.
  • Thread adapters and connector protectors must be considered in choosing the sensor for a specific test stand application.
  • Multi-axis data capture often requires robust instrumentation to take full advantage of the data.
  • Invest in versatility and ruggedness to maximize return.

Additional Test Stand Options

  • Programmable speed and force controllers help to regulate the rate at which the load is applied to the product, as well as the maximum force that can be applied during a given test period or cycle.
  • Data logging instrumentation records the force data for each test. This data can then be used to analyze the results of the test and to make sure that the product meets the required specifications.
  • Remote monitoring and controls help with test stand use from a remote location. This can be useful to run tests without being physically present at the test stand.

There are many different types of load cell test stands, so it is important to choose one that is right for your specific needs. When selecting or building a load cell test stand, consider the weight or force that you need to measure, the accuracy and precision, the environment in which the test stand will be used and the equipment budget.  This is a topic we detailed in our Testing Lab Essentials Webinar. Watch this portion of the online technical seminar below.

Load Cell Test Stand Use Cases and Applications

  • Aerospace test stands are used to measure the strength of aircraft structures. Test stands are used to test the performance and durability of aircraft components, such as wings, fuselages, and engines. They are also used to test the structural integrity of aircraft materials, such as composites and metals.
  • Material test stands can be used to exam the strength, stiffness, and toughness of materials.
  • Structural test stands are used for small capacity testing, as well as large amounts of force to measure the structural integrity of buildings, bridges, and other formations.
  • Dynamic test stands are used to measure the performance of products under different environmental conditions, such as shock and vibration testing.
  • Medical manufacturers need to test the performance of medical devices. Test stands are used to test the performance and durability of medical devices, such as pacemakers and defibrillators. They are also used to test the accuracy of medical instruments and in-home medical equipment, as the safety of user is paramount to all other requirements.
  • Automotive labs use test the performance of engines, transmissions, brakes and other components. They are also used to test the durability of automotive materials, such as tires and plastics.
  • Consumer product manufacturers and OEMs must test the durability to ensure customer satisfaction and reliability of the product. Test stands are used in testing toys, appliances, tools, and electronic devices.
  • Industrial automation component makers and OEMs must test the strength of machine parts and materials used in product lines, machine tools, and robots. They are also used to test the safety of industrial equipment, such as forklifts and cranes.

Load cell test stands are an essential tool to accurately measure the forces acting on a test specimen. By using a load cell test stand, testing engineers can ensure that their equipment is operating within its design limits and that it is safe to use. If you have questions about building or upgrading your test stand, be sure to consult with our application engineers.

What are IO-Link Load Cells

Interface continues to see a growing demand for using different communication protocols within our force measurement sensors and instrumentation devices. One of these protocols is IO-Link, which is a standardized communication protocol that enables bidirectional communication between the control system and the connected devices. It is frequently used in the field of industrial automation and IoT.

IO-Link is designed to connect and communicate between sensors, actuators, and other industrial devices with a higher-level control system. It runs over a standard three-wire connection, typically using unshielded industrial cables, and supports point-to-point communication.

Industrial automation and IoT are fundamentally reliant on digital transformation. Industry 4.0 requires the exchange and communication of information between sensor and instrumentation. IO-Link supports this requirement, helping to keep machines and facilities using sensors under control while improving their efficiency and productivity.

IO-Link can be used with load cells in industrial applications to enable enhanced monitoring, control, and diagnostics. Interface now offers customization of our most popular load cells with IO-Link capabilities.

Why Use IO-Link in Test & Measurement

  1. IO-Link is compatible with a wide range of sensors, actuators, and other devices. It provides a standardized interface, allowing easy integration and interchangeability of devices within an automation system.
  2. Real-time monitoring, control, and diagnostics is especially important in test and measurement. IO-Link enables this type of data exchange between devices and the control systems supporting the transmission of measurement data.
  3. IO-Link supports both analog and digital devices, making it versatile for a range of applications.
  4. With IO-Link, devices can be connected using a single cable, reducing the complexity and cost of wiring and simplifying installation and maintenance.
  5. Health and maintenance are important in testing. IO-Link supplies advanced diagnostic capabilities, allowing devices to report their status, health, and detailed diagnostic information. This is valuable for maintenance, troubleshooting, and reducing downtime.

Interface 1200 and 1201 Load Cell IO-Link Features and Benefits

The 1200 and 1201 Series IO-Link Load Cell Universal or Compression-Only are LowProfile load cells that are IO-Link compatible.

  • Proprietary Interface temperature
  • Compensated strain gages
  • Eccentric load compensated
  • Low deflection
  • Shunt calibration
  • Tension and compression
  • Compact size
  • 3-wire internal amp choice of 4-20 mA, ±5V, ±10V, 0-5V, 0-10V
  • Options include Base (recommended), custom calibration, multiple bridge, special threads and dual diaphragm
  • Accessories include mating connector, mating cable, instrumentation and loading hardware

For a complete datasheet of this product, go to the 1200 and 1201 with IO-Link product page.

IO-Link integration with load cells enhances the functionality and flexibility of weight measurement systems by enabling seamless communication, remote evaluations and diagnostic capabilities. It contributes to more efficient and reliable industrial processes where precise monitoring is necessary.

Weight and force monitoring: By connecting load cells to an IO-Link-enabled system, such as a PLC or a weighing controller, real-time weight data can be transmitted and monitored. The load cells measure the weight or force applied to them, and this information can be instantly communicated to the control system via IO-Link. The control system can then perform tasks such as weight-based control, process optimization, or triggering specific actions based on weight thresholds.

Remote parameterization and calibration: IO-Link allows load cells to be remotely parameterized and calibrated from the control system. Instead of manually adjusting the load cell settings at the device level, the control system can send the necessary configuration commands through the IO-Link interface. This feature simplifies the setup process, saves time, and reduces the risk of errors during calibration.

Performance evaluation and detection: IO-Link provides diagnostic capabilities for load cells, enabling the detection of potential issues or abnormalities. The load cells can send diagnostic information, such as temperature, supply voltage, or fault codes, to the control system through IO-Link. This data can be utilized for predictive maintenance, troubleshooting, or alarming in case of malfunctions.

IO-Link enhances the functionality, flexibility, and efficiency of industrial automation systems by enabling intelligent communication between devices and the control system.

ADDITIONAL RESOURCES

Interface New Product Releases Summer 2023

Force Sensors Advance Industrial Automation

Interface Weighing Solutions and Complete Systems

Instrumentation Analog Versus Digital Outputs

 

Interface Supports Wind Tunnel Testing

In the development of an airborne vehicle, like a plane or helicopter, wind tunnel systems are used to gather data across a variety of tests related to the aerodynamics of the vehicle’s design. Whether an object is stationary or mobile, wind tunnels provide insight into the effects of air as it moves over or around the test model. Interface is a supplier of measurement solutions used for aircraft and wind tunnel testing.

Wind tunnels are chambers that test small scale model versions of full systems, or in some cases, parts and components, depending on the size and capabilities of the wind tunnel. They work by allowing the engineers to control airflow within the tunnel and simulate the types of wind force that airplanes and other aircraft will experience in flight. Wind tunnels are also used for testing automobiles, bicycles, drones and space vehicles.

By taking careful measurements of the forces on the model, the engineer can predict the forces on the full-scale aircraft. And by using special diagnostic techniques, the engineer can better understand and improve the performance of the aircraft.

The process for measuring the force and how it reacts to this force works by mounting the model in the wind tunnel on a force balance or test stand. The output is a signal that is related to the forces and moments on the model. Balances can be used to measure both the lift and drag forces. The balance must be calibrated against a known value of the force before, and sometimes during, the test.

Interface’s strain gage load cells are commonly used in wind tunnel testing due to their quality, accuracy and reliability. The instrumentation requirements often depend on the application and type of test. The range of options for both load cells and instrumentation vary based on scale, use, cycle counts, and data requirements.

Instrumentation used in wind tunnel testing can be as simple as our 9325 Portable Sensor Display to a multi-channel data acquisition system. Interface analog, digital and wireless instrumentation solutions provide a range of possibilities. As is the case, wind tunnel testing is typically very sensitive. It is important to calibrate the instrumentation before each test to measurement accuracy.

Types of Wind Tunnel Tests Using Force Measurement Solutions

  • Lift and drag: Load cells are used to measure the two most significant forces that impact aircraft design. Lift is the force that acts perpendicular to the direction of airflow and keeps the craft airborne. Drag is the force that acts parallel to the direction of airflow and opposes forward motion.
  • Side force: This force acts perpendicular to both the direction of airflow and the lift force. It is caused by the difference in pressure between the upper and lower surfaces of the aircraft.
  • Moments: Moments are the forces that act around a point. The most common moments measured in wind tunnels are the pitching moment, the yawing moment, and the rolling moment.
  • Stability and control: Tests conducted to measure the stability and controllability of an aircraft are commonly using force measurement solutions for aircraft design changes or integrating new parts into an existing model.
  • Performance: Particularly important with new designs, engineers use these tests to measure the simulated flight performance under maximum speed, range and fuel efficiency.

The specific tests that are conducted in a wind tunnel depend on the project requirements.

Multi-Axis Sensors for Wind Tunnel Testing Applications

In measuring the forces of a wind tunnel test, multi-axis sensors offer the perfect solution for collecting as much data as possible across every axis, giving the engineer a more complete picture on the aerodynamics of the plane. In fact, Interface has supplied multi-axis load cells for use in several wind tunnel testing applications, for OEMs, testing facilities and part makers.

We offer a variety of multi-axis options including 2, 3 and 6-axis standard and high-capacity configurations depending on testing and data requirements of the user. These sensors can precisely measure the applied force from one direction with little or no crosstalk from the force or moment. Interface products provide excellent performance and accuracy in force and torque measurement.

To match the demands of the volumes of data available using multi-axis sensors in wind tunnel testing, Interface often provides several data acquisition instrumentation solution along with our BlueDAQ software.

Wind Tunnel Test Application

A major aerospace company was developing a new airplane and needed to test their scaled model for aerodynamics in a wind tunnel, by measuring loads created by lift and drag. Interface Model 6A154 6-Axis Load Cell was mounted in the floor of the wind tunnel and connected to the scaled model by a stalk. The wind tunnel blew air over the scaled model creating lift and drag, which was measured and compared to the theoretical airplane models. The output of the 6-axis sensor was connected to the BX8-AS Interface BlueDAQ Series Data Acquisition System, which was connected via USB cable to a computer. Using this solution, the company was able to analyze the collected data and made the necessary adjustments in their design to improve the aerodynamics of their theoretical airplane models.

Interface supports wind tunnel testing and all uses of force measurement in the advancements in aeropspace.

Wind tunnel testing is critical to the aircraft industry, as well as other industries like automotive and space. Interface has been providing multi-axis sensors and strain gage load cells to industry leaders and wind tunnel operators. We understand the unique needs of this type of testing and the instrumentation options that work best with our high-accuracy sensors. We also can work to provide custom solutions, load cells for use in extreme environmental conditions. Contact us to get the right solution for your specific testing program.

Additional Resources

Aircraft Wing Fatigue App Note

Airplane Jacking System

Interface Airplane Static Testing Case Study

Taking Flight with Interface Solutions for Aircraft Testing

Aircraft Yoke Torque Measurement

Aircraft Screwdriver Fastening Control App Note

Interface’s Crucial Role in Vehicle and Urban Mobility Markets

Rigging Engineers Choose Interface Measurement Solutions

 

Innovative Interface Lifting Solutions

Interface sensors are utilized in lifting applications to accurately measure the weight or force being exerted on the lifting equipment of all sizes. Our lifting solutions include load cells, load pins, tension links and shackles, wireless technologies, and instrumentation. It is common to see our sensors integrated into hoists, cranes, and lifting devices to provide precise load measurements.

Interface lifting solutions apply to a wide range of industries and settings, including construction sites, warehouses, manufacturing facilities, transportation, healthcare facilities, maritime docks, aircraft testing and assembly, and more. Lifting applications can vary, such as loading and unloading goods, positioning heavy equipment or machinery, transferring patients in healthcare settings, or lifting materials for construction purposes.

Our load cells, load pins and shackles assist in monitoring loads for heavy lifting equipment operators to remain within safe working limits and prevent overloading. Interface tension links and tension load cells are used for measuring lifting or pulling heavy loads with chains, cables, or ropes. The sensors measure the tension in the lifting element, providing feedback on the load being lifted and ensuring it remains within safe limits. Check out our Lifting Solutions Overview for complete details.

Top Interface Lifting Solutions

References of lifting equipment include cranes, hoists, forklifts, aerial work platforms, lifts, jacks, and various types of rigging and slings. These equipment types are designed to provide mechanical advantage, leverage, or power to lift, suspend, move, or position loads safely and efficiently. By leveraging sensor technologies, the benefits include increased safety for the operator, enhanced productivity, and efficiency optimization of load management. Additional benefits include predictive maintenance, plus smart and innovative utilization for modernization of projects and equipment.

Rigging engineers, whether working in testing environments from concert venues to rocket testing sites, use high-accuracy sensor technologies to ensure the safe and efficient movement of heavy equipment, machinery, and materials using cranes, hoists, pulleys, and other lifting devices. They are involved in the entire rigging process, from the initial assessment and design of rigging systems to overseeing the actual lifting operations.

Safety is of utmost importance in all lifting applications due to the potential risks associated with heavy loads, heights, and moving parts. The use of load monitoring devices such as load cells, tension links, load pins, or load shackles are critical to ensure the safe execution of lifting operations.

When Interface defines lifting applications, we are referring to the actions of objects, materials, or loads that are raised, lowered, or moved vertically or horizontally using lifting equipment or mechanisms. For use of our measurement solutions, these lifting applications involve the use of specialized equipment designed to safely and efficiently handle various types of loads.

In the construction industry, Interface load cells and load pins are integrated into smart cranes and construction equipment to provide real-time monitoring of the loads being lifted or carried. Lifting beams and spreader bars need high-accuracy measurement on the site. These sensors accurately measure the weight or force exerted on the equipment and provide data on the load’s status, ensuring safe operation within specified limits. This information can be used to prevent overloading, optimize load distribution, and enhance operational safety and prevent failure of any machinery.

Infrastructure demands durability, quality and accuracy of measurement. Interface load cells, tension links, load pins, and load shackles are employed in load testing applications to verify the strength and capacity of various lifting structures and equipment. They are used for a range of applications, including crane verification and safety monitoring, hoist monitoring, winch measurements, elevator suspension systems, lifting cables, overload alarms, and load testing. These tests measure the applied load and assess the structural integrity. Load cells or load shackles are often temporarily attached to lifting points or incorporated into the testing rig to capture accurate load data.

The maritime industry uses Interface measurement devices in crane systems, winches, and lifting equipment onboard ships, on offshore platforms, or vessels. These ruggedized and often submersible sensors ensure that loads are properly managed and controlled, enabling safe and efficient lifting operations in challenging marine environments. Check out this Boat Hoist application note.

Warehouses and logistics use load cells or load pins for shipping container handling, pallet weighing, conveyor systems and freight and cargo monitoring. The sensors can be easily integrated into forklifts to measure the weight of the lifted load, ensuring safe lifting, and preventing overloading.

Interface load cells and sensor technologies are also being used in applications for patient lifting and transfer. Load cells or load shackles can be integrated into patient lifting and transfer equipment, such as hoists or patient slings, hospital beds and therapy equipment. These sensors help monitor the load and ensure safe and comfortable transfers for patients and caregivers.

By integrating Interface solutions into lifting applications, the result is enhanced safety, improved efficiency, and optimization of load management. Real-time data from sensors allows for precise control, early detection of anomalies, and preventive maintenance, ensuring smooth and secure lifting operations, whether that is for a patient in a hospital or a cargo load moving from dock to ship.

Interface offers standard products for lifting, as well as custom and OEM lifting solutions.  Contact our application engineers to learn more about what type of lifting solution is best for your requirements.

Lifting Solutions Brochure

ADDITIONAL RESOURCES

Aircraft Engine Hoist

Theater Rigging System

Patient Hoyer Lift

IoT Lifting Heavy Objects App Note

Interface Solutions for Lifting Applications

Cranes and Lifting

Aircraft Lifting Equipment App Note

Aerial Lift Overload Control

Data Acquisition Systems 101

Engineers and testing professionals use data acquisition systems to enable smart decisions. The data retrieved through DAQ systems empower users to identify points of failure, optimize performance, and create efficiencies in products and processes.

When it comes to measuring force, the accuracy and reliability of the sensor is a critical component to receiving quality data. The data acquired from measurement devices, including load cells, torque transducers, and other types of force sensors, is valuable for product development, research, and robust testing to ensure performance and durability of all types of innovations. Ultimately, utilizing precision-based data provides enhanced control and response for all types of applications and use cases. Interface provides a wide range of data acquisition instrumentation that is easily paired with our force measurement products.

By definition, a data acquisition system is a collection of components used to acquire data via analog signals and converting them to digital form for storage, research, and analysis. Data acquisition systems, also called DAQ systems, typically are made up of sensors, signal conditioners, converters, plus computer hardware and software for logging and analysis. Interface experts are available to help pair the transducers with the right instrumentation.

The data acquired through the measurement device is only useful if it is logged for analysis and traceability. This is where instrumentation, in particular DAQ systems come into play, in not only transferring data, but also obtaining the right type of data in a format and data transfer method that works with existing user systems.

Data acquisition that utilizes analog output has long been the standard in the industry. As new requirements for use cases and applications grow, test and measurement professionals and engineers find these systems advantageous because of the lower cost, easy integration, and scalability. They also like the advantage of daisy-chaining multiple sensors together on a single cable run to maximize the amount of data through single tests. More data improves the quality of analysis and monitoring.

Advancements in sensor technologies coincide with growing demands for digitalization and to gather more testing data. This is seen using multi-axis sensors, along with requirements for multi-channel acquisition that can integrate into existing systems already designed with specific digital connections and protocols.

In addition to improving speed of data output, acquisition systems offer an abundance of value-added benefits. This is primarily due to the digital signal, as they are less susceptible to noise and are more secure. The systems also typically have built in error detection. Digital signals are best for transmitting signals across longer distances or when you need to allow for simultaneous multi-directional transmissions. Many people like the ease of integration, both into existing networks as well as with other testing devices.

Data acquisition systems and accessories come in many shapes and sizes, wired and wireless and there are also a handful of different software options in different systems. All these various products such as digital instruments, input and output modules, cables, monitors, and accessories. Interface offers a range of DAQ products, including full systems including the sensors.

Interface Complete Data Acquisition Systems

BlueDAQ Data QA Pack

Force sensors can easily connect via the BlueDAQ Family Data AQ Pack for fast and accurate data acquisition. This solution provides a convenient way to view the test results from transducers including single axis, dual axis, 3-axis, and 6-axis multi-axis sensors. Check out our BX8-HD44 BlueDAQ Series Data Acquisition System for Multi-Axis Sensors with Lab Enclosure.

T-USB-VS Rotary Torque Transducer Data AQ Pack

Connecting dynamic torque transducers to the T-USB Rotary Torque Transducer Data Acquisition Pack will provide you with convenient way to view the test results for your torque transducers that have internal USB functionality.

WTS Wireless Data AQ Pack

Utilizing the popular WTS Wireless Data Acquisition Pack provides convenient wireless communication with speeds up to 200 samples per second. Learn more in our Interface Wireless Telemetry System Review. See the complete line Interface WTS here.

DIG-USB PC Interface Module Data AQ Pack

Interface’s DIG-USB Data Acquisition Pack enables a straightforward way to view the test results our load cells or torque transducers. Check out the popular DIG-USB Output Module and the DIG-USB-F Fast USB Output Module.

9325 Portable Display Data AQ Pack

Interface’s 9325 Data Acquisition Pack makes your system portable. The 9325 allows simple display of strain bridge based measurements such as load cells, torque transducers, and other mV/V output transducers with sensitivity up to +/-1 V/V.

INF-USB-VS3 PC Interface Module Data AQ Pack

Our INF-USB-VS3 Data Acquisition Pack connects Interface mV/V load cells or torque transducers to provide real-time data analysis.  Here is more information about the INF-USB3 Universal Serial Bus Single Channel PC Interface Module.

Interface Data Acquisition Systems are modular. We offer the complete system, including enclosures, along with single components to complete a system. Consult with our application engineers to learn what system would be best for your test and measurement programs.

Data AQ Pack Brochure

 

 

 

Types of Force Measurement Tests 101

There are distinct types of force tests that engineers, product designers, manufacturers, and test labs perform to accurately measure factors that control quality, safety, and reliability.

Testing force helps to qualify how something will react when applying load, either by a normal application or by pulling and pushing it fails. The type of force measurement classifications are compression, fracture, tension, flexure, and shear.

Interface provides a broad range of solutions for static and dynamic force measurement tests including standard and custom transducers, instrumentation, accessories, frames, calibration equipment and other components used for in force testing.

The most common categories of force testing include:

  • Tensile testing
  • Shear testing
  • Compression testing
  • Fatigue testing
  • Torque testing
  • Hardness testing
  • Static testing
  • Mechanical strength testing
  • Material testing
  • Proof load testing
  • End of line testing

There are variations to each of these test classifications, such as cycle testing is often a subset of fatigue and mechanical strength tests. Hardness testing is frequently referred to as nondestructive testing. Initial R&D tests typically center around choosing materials, strength and durability tests, compression ergonomic and abrasion tests.

Here are the general characterizations of the most popular types of force tests.

Tensile Test

Tensile strength is the ability of a metal to withstand a pulling apart tension stress. Performing a tensile test, sometimes referred to as tension testing, applies uniaxial load to a test bar and gradually increasing the load until it breaks. The measurement of the load is against the elongation using an extensometer. The tensile data is analyzed by using a stress-strain curve. Interface load cells are commonly used for various tensile tests when accuracy of measurement matters.

Compression Test

Compression is the result of forces pushing towards each other. The compression test is like the tensile test. Place the object in a testing machine, apply a load and record the deformation. A compressive stress-strain curve is drawn from the data. Interface provides load cells that measure compression-only or tension and compression measurements from the same device.

Torque Test

Torque measurement determines how an object will react when it is turned or twisted. There are two common use cases, fastening tests of objects or by testing rotating parts in an assembly. The two types of torque measurement are reaction and in-line, which are important when selecting the type of torque transducer to use in your test. The wrong torque can result in the assembly failing due to several problems, whether that is by torque testing bolts or engine parts. Parts may not be assembled securely enough for the unit to function properly, or threads may be stripped because the torque was too high, causing the unit to fail. Torque is a force producing rotation about an axis. This type of testing is also extremely popular in automotive to measure a variety of components.

Shear Test

Shear strength is the ability to resist a “sliding past” type of action when parallel, but slightly off-axis, forces, applied in the test. Shear force is directional force that is over the top of a surface or part. Shear is measured by tension or compression using a shear or bending beam load cell.

Hardness Test

Hardness testing, which measures the resistance of any material against penetration, is performed by creating an indentation on the surface of a material with a hard ball, a diamond pyramid or cone and then measuring the depth of penetration. Hardness testing is categorized as a non-destructive test since the indentation is small and may not affect the future usefulness of the material. There are a wide variety of hardness testing types as well.

Examples of Testing Types

Compression Test Example

Interface’s customer wanted to measure the amount of compression force a piece of candy could withstand to ensure its label is marked correctly. The purpose of the test was to correctly calibrate the equipment to provide the same stamping force each time without breaking the candy apart. An Interface Model WMC Mini Load Cell and 9330 Battery Powered High Speed Data Logging Indicator are used to measure the results. Read more about this compression test here.

Torque Measurement Example

In this example torque testing accurately measures the forced needed to securely fasten a bolt. This type of test is critical in highly regulated industries like aerospace and automotive to ensure every screw and bolt are not over or under-tightened. Interface’s LWCF Clamping Force Load Cell along with Interface’s INF-USB3 Universal Serial Bus Single Channel PC Interface Module provide a solution that monitors the force being applied during bolt tightening.

Shear Test Example

This example shows how aerospace manufactures use shear testing to measure the affects of wind as it moves past the wings, hull, and other components of a plane. Interface measured this force using a Model 6A154 6-Axis Load Cell mounted in the floor of the wind tunnel, and connected  to the scaled model by a “stalk”. A BX8-AS Interface BlueDAQ Series Data Acquisition System was connected to the sensor to collect data.

As products become more complex and technologically advanced, the test and measurement industry must provide solutions to monitor a wide variety of factors. This is no different in force measurement.

Interface has been involved in every type of force measurement type across a variety of applications both large and small. To learn more about our more than 36,000 product SKUs designed to conduct all these tests, from single load cells and torque transducers to complete testing rigs and systems. We also provide calibration services for all types of force measurement transducers. Contact us if you are unsure which force measurement solution best fits your testing plan.

Additional Resources

Tensile Testing for 3D Materials

Material Tensile Testing

Interface Solutions for Material Testing Engineers

Bike Handlebar Fatigue Testing

Interface Specializes in Fatigue-Rated Load Cells

Specifying Accuracy Requirements When Selecting Load Cells

Spring Compression Testing App Note

Insights in Torque Testing Featured in Quality Magazine

Making the Case with Accuracy and Reliability for Ultra HD Testing

Interface is a leader in ultra-accurate and high-reliability force measurement solutions and services for original equipment manufacturers (OEMs)

We recently published a case study on a unique and complex project for a customer specializing in designing and building automated systems to observe and test for color and light performance in Ultra HD displays. It was a great opportunity for Interface to showcase our innovative design expertise. Working with OEMs in partnership allow our team members to collaborate closely to on the project’s specific and delicate nature.

This blog provides an abbreviated version of the case study. You can download the full version here.

Qualifying Ultra HD Resolution

With the rising popularity of Ultra HD and 4K format video monitors, testing for video output quality is critical. These screens have a resolution of 3840×2160.  This is four times the number of pixels in full-high-definition (HD) and eight times as many as standard definition. To put it in perspective, Ultra HD (UHD) is only a slightly lower resolution than the picture displayed on theater movie screens.

Evaluating the Application Requirements

Interface’s customer needed a solution to monitor and control forces during testing. With this technology, inspecting the color and light performance of the screen is much more critical than ever before due to the intensity of perception. Because the hype of this technology is centered around its stellar resolution, testing for output quality is one of the most important steps in the manufacturing process.  The solution had to easily allow for the mounting of sensors into the large glass array handling tool.

The Clear Results

Interface’s solution provided direct force and weight feedback around the periphery on the monitor array panel to allow for precise handling control without fracturing the glass. Because of Interface, the customer was able to test the video output quality long before the completion of the end product.

For more than 51 years, Interface has worked with manufacturers to provide industrial automation solutions for test and measurement that improve products, reduce risks and ultimately foster continuous innovation to do more, better and faster.  For more information on how Interface can help solve your unique challenges, contact our application engineer team today.

READ THE FULL CASE STUDY HERE

Interface Case Study For HD Manufacturer