Posts

Robotics in Play with New Animated Application Using ConvexBT

Numerous factors are driving the industry 4.0 revolution. From big data to IoT technology, industrial facilities and manufacturing plants are looking at new ways to automate their process and create a more efficient and cost-effective environment. One of the most important technology advancements in this mix is robotics.

Robotic equipment is a common industry 4.0 innovation used to create an autonomous or semi-autonomous machine capable of carrying out a variety of repetitive tasks that used to take up the time of skilled labor. Some of the tasks or processes that robotics enhance include stock management and logistics, manufacturing automation, janitorial duties and, there are even robotic applications called co-bots that assist human workers when ultra-high precision is needed.

To facilitate the demand for robotics, a variety of sensor and measurement components are necessary to ensure the highest quality and reliability of these application. Many tasks carried out by robotic applications are ultra-precise and require more accuracy than what a human hand or eye can handle.

Sensor technologies embedded in the actual robotics instrument must also be used to constantly calibrate or monitor the robotics. If robotics is used on an automated manufacturing line, any issues with the robotics can disrupt and compromise the entire process. Therefore, robotics manufacturers utilize Interface solutions when they need quality sensors that can monitor the precision of the robotics and ensure that their accuracy and reliability is maintained.

Interface develops high-quality test and measurement solutions designed for hardware testing of all kind. For robotics, our products are frequently used as a component within an OEM device. We understand the premium accuracy and reliability necessary to help develop robotics solutions and have provided both off-the-shelf and custom force measurement solutions designed to meet a variety of applications. We recently created an animated application note on an industrial automation robotic arm using our new light weight, light touch load button load cell, the ConvexBT.

The ConvexBT is designed for testing and also for full integration into the robotic element to measure the force pressure during use.  ConvexBT is available in multiple capacities, including our latest release of the 500lb and 1Klb models.

NEW! Interface Robotic Arm Application Note

A customer came to Interface with a robotic arm product that would be used to lift and move delicate objects, such as a glass bottle, in an automated environment. The goal in using Interface was to find a force measurement product that could ensure the robotic arm did not damage the products it was moving by applying too much force. The main component that Interface products would be applied to is the robotic arms’ clamp. The objective was monitoring the grabbing pressure of the clamp and ensure that the device would stop applying pressure when the necessary force was used to pick up the object without doing damage.

Using its new line of Load Button Load Cells, ConvexBT, and a DMA2 DIN Rail Mount Signal Conditioner, Interface provided a solution that would produce an electric signal on the clamping process that tells a controller to have the device stop applying pressure. Two ConvexBT products were connected underneath the rubber pads on both sides of the robotic arm clamping device. When the clamps made contact and applied pressure, the DMA2 Signal Conditioner converted the signal from the ConvexBT from MV/V to volts to a PLC controller. This signal tells the controller when to have the robotic arm stop applying clamping force.

Ultimately, the two ConvexBT Load Button Load Cells were able to accurately measure the amount of pressure applied to the object the robotic arm was lifting and moving without causing any harm or damage to the object.

This is just one of many examples of force measurement products being used in the robotics and automation industry. As the demand for robotics grows and a wider variety of applications are introduced, Interface will continue to engineer the best solutions to help customers reach the age of Industry 4.0.

To learn more about Interface solutions for the robotics and automation industry, please visit /solutions/. You can also check out our case study on the for industrial automation and robotics use here.

Testing for Commercial Drones and Parcel Delivery

Drone parcel delivery, and the use of drones in general, has expanded rapidly throughout the world. A technology that was once relegated to science fiction and imagination is becoming a real-world asset and making a huge impact on many commercial use applications in military and defense, consumer goods, logistics and inventory management, industrial automation, construction, security, agriculture, healthcare, imaging and surveying, as well as shipping and fulfillment.

To give you an idea of the impact of drones, take a look at recent numbers published by the FAA on registered drones in the U.S.:

  • 1,710,159 Drones Registered
  • 495,909 Commercial Drones Registered
  • 1,210,751 Recreational Drones Registered
  • 195,346 Remote Pilots Certified

There is a significant role for test and measurement as well as embedded sensors in this growing industry, which is expected to reach of $6B in size in the next few years. Load cells play a huge part in the design and development of this specialized aircraft technology and ongoing monitoring while in flight. Drones are classified as unmanned aerial vehicles. Basically, an aircraft without a human pilot. Successful operation of a UAV is dependent on a system, including the vehicle, a ground-based controller, and communications components, all of which must pass rigorous performance testing standards and constant data feedback.

The knowledge and tools we apply to test and measure airplanes and spacecraft performance can be transferred at a smaller scale to drones. Drone OEMs need to collect data points on thrust and velocity in test, and they also need to collect real-time sensor data on drones in-use. In fact, a large variety of sensor types are used for drone applications, including: force sensors, gyroscopes, barometers, and accelerometers.

Most recreational drones have passed significant testing during the engineering and design phase to ensure safety for anyone on the ground. Early applications and adoption sparked immediate regulation and safety requirements. We are now seeing the fastest expansion of this technology into commercial use. The future of drone technology for wide-scale business use has several of the world’s largest companies engaged in expansive development and deployment in use of UAVs for package delivery, including Alphabet (Google), Amazon, UPS, CVS and Walmart.

Commercial applications require substantially more rigorous testing in all use cases, in particular for transportation of objects. Most developed countries have defined commercial use requirements and regulations, such as the FAA in the U.S. Not only is the safety of those on the ground important critical, so is protecting the value of the goods in transport.

In demonstrating how force measurement solutions are used with drone technology, Interface created animated application note showcasing how a force solution is necessary for real-time monitoring of drones used in the shipping and fulfillment markets. Testing beyond flight, there is a level of complexity present when you introduce the weight of a package to a drone.

DRONE TESTING USE CASE

Customer Challenge:

A customer approached Interface to deliver a force solution capable of weighing a “payload” and using that data in real-time to tell the propeller motors to compensate for weight shifting or uneven weight distribution. The purpose of the force solution was to help the drone lift the payload and fly normally to reach its destination.

Interface Force Measurement Solution:

To solve this challenge, Interface supplied four WMC Sealed Stainless Steel Miniature Load Cells, which were used to measure the weight of the payload and detect weight shifting and distribution in flight. As shifting and uneven distribution occurred, the load cells send a signal to the necessary propeller motors to compensate.

How it Works:

The four miniature load cells are connected independently to each of the four landing gear legs. The load cells are then connected to the drone’s processor, which allows the load cell to communicate the weight of the payload and store the information. As the drone flies and weight shifts, the load cell can then relay the information to the processor in real-time so that the individual motors increase in RPM to balance the shifting weight.

Subscribe to Interface’s YouTube Channel to see our latest animated application notes. This new series of animated application notes give viewers a better sense of how force measurement products are applied to real-world challenges to collect and analyze data. So far, we have produced three animated application notes, which we have linked below: