Posts

Load Cell Stiffness 101

Load cell stiffness refers to the ability of a load cell to resist deformation when a load is applied to it. It is a measure of how much a load cell will deflect or bend under a given load. Stiffness is an important specification of load cells, as it affects their accuracy and sensitivity.

Load cell stiffness is typically conveyed as the ratio of the load applied to the deflection of the load cell. For example, if a load cell deflects 1mm when a load of 100N is applied, its stiffness would be 100N/mm.

The selection of a load cell with an appropriate stiffness is critical to ensuring optimal performance in each application and should be carefully considered in the design and implementation of any measurement system. Load cell stiffness can significantly alter the performance.

High stiffness load cells are preferred in applications where high accuracy and precision are required, as they provide greater resistance to deformation and are less susceptible to measurement errors. High stiffness provides more precise and consistent measurements. They are the preferred choice for many applications, including in aerospace, robotics, material testing and of course calibration and metrology.

Low stiffness load cells may be used in applications where flexibility and compliance are necessary, such as in weighing systems that must accommodate vibration or movement. Load cells with low stiffness may be more suitable for applications where flexibility and compliance are important, such as in dynamic force measurement or shock testing.

The determination of load cell stiffness requires consideration of several key factors, including:

  • Load capacity of the load cell should be considered when determining its stiffness. Load cells with higher load capacities typically require greater stiffness to maintain their accuracy and precision under load.
  • Sensitivity of the load cell, or the amount of output change per unit of input change, should also be considered. Load cells with higher sensitivities may require greater stiffness to maintain their accuracy, as they are more sensitive to changes in the applied load. Read more in Load Cell Sensitivity 101
  • Environmental conditions in which the load cell will be used should also be considered, such as temperature, humidity, and vibration. In some cases, load cells with lower stiffness may be necessary to accommodate for environmental factors such as thermal expansion.
  • Application requirements specific to the use case, such as the required measurement range, accuracy, and resolution, will define the success of our project or program. Load cells with higher stiffness may be necessary for applications requiring high accuracy and precision, while load cells with lower stiffness may be more suitable for applications requiring greater flexibility and compliance.
  • Natural frequency, which is the frequency at which it oscillates when subjected to an external force is a consideration. Load cells with high stiffness have a higher natural frequency, which allows them to respond more quickly to changes in the applied force, resulting in faster and more accurate measurements.

Load cell design plays a critical role in controlling load cell stiffness. There are several key design factors that can affect the stiffness of a load cell, include material selection, geometry, strain gage placement and mechanical configuration. Read Get an Inside Look at Interface’s Famously Blue Load Cells to review our precision design features.

The choice of materials used in the load cell construction can have a significant impact on its stiffness. Load cells made from materials with higher Young’s modulus, such as stainless steel, are stiffer than load cells made from materials with lower Young’s modulus, such as aluminum.

Load cells with thicker walls, larger cross-sectional areas, and shorter lengths are stiffer than load cells with thinner walls, smaller cross-sectional areas, and longer lengths.

Strain gages placed closer to the neutral axis of the load cell will experience less strain and deformation, resulting in a stiffer load cell.

The mechanical configuration of the load cell, including the number and arrangement of its sensing elements, can also affect its stiffness. Load cells with more sensing elements arranged in a parallel or series configuration can be designed to be stiffer than load cells with fewer sensing elements.

Load cell design plays a critical role in controlling load cell stiffness to ensure that it meets the stiffness requirements of the application. If you have questions about the load cell that best fits your application, please contact us. Our experts are here to help.

ADDITIONAL RESOURCES

Interface Load Cell Field Guide

How Do Load Cells Work?

LowProfile Load Cells 101

Load Cell Basics Sensor Specifications

Load Cell Basics Webinar Recap

Off-Axis Loading 101

Off-axis loading refers to a situation where a load cell, which is a device designed to measure force or weight, is subject to forces that are not aligned with its primary sensing axis. Load cells are typically designed to measure forces that are applied along a specific direction or axis, which is known as the primary sensing axis. When forces are applied to the load cell in other directions, this is referred to as off-axis loading.

Off-axis loading can affect the accuracy of load cell measurements, as the load cell may not be able to accurately distinguish between forces that are applied along the primary sensing axis and forces that are applied in other directions. This can result in errors in the measured weight or force.

To minimize the effects of off-axis loading, load cells are often designed with measures to reduce sensitivity to forces applied in other directions. These may include mechanical features such as strain relief structures or specialized materials that are more resistant to off-axis loading. Additionally, load cells are often installed and used in ways that minimize the likelihood of off-axis loading, such as aligning the primary sensing axis with the direction of the applied force. Be sure to carefully follow all Force Measurement Installation Guides provided with sensor.

What can be done to protect from off-axis loading?

Off-axis loading can affect the accuracy of load cell measurements, so it is important to take steps to protect against it. Here are a few ways to do so:

  • Use proper mounting and alignment: Load cells should be mounted and aligned in a way that ensures that the primary sensing axis is aligned with the direction of the applied force. This helps to minimize off-axis loading and ensure accurate measurements.
  • Use appropriate accessories: Using accessories such as adapters or mounting bases can help to ensure that load cells are properly aligned and oriented, minimizing the potential for off-axis loading.
  • Use anti-rotation features: Many load cells are equipped with anti-rotation features, such as bolt-hole patterns or keyway slots, which help to prevent the load cell from rotating around its mounting point. This can help to maintain proper alignment and reduce the effects of off-axis loading.
  • Use overload protection: Overload protection features, such as limit switches or stoppers, can be used to prevent load cells from being subjected to excessive forces or moments. This can help to prevent damage to the load cell and ensure accurate measurements.
  • Use a protective enclosure: Load cells can be placed in protective enclosures that shield them from external forces and environmental factors. These enclosures can help to protect against off-axis loading, as well as other types of interference.

By taking these steps, load cell users can help to protect against the effects of off-axis loading and ensure accurate and reliable measurements.

Product designs that mitigate off-axis loading

Engineers are constantly working to design new load cells that are more resistant to off-axis loading.  In fact, Interface product engineers have several products that are designed to protect from off-axis loading, including:

  1. ConvexBT Load Button Load Cell
  2. SuperSC S-Type Miniature Load Cell
  3. MBP Overload Protected Miniature Beam Load Cell
  4. MRTP Miniature Overload Protected Flange Style Reaction Torque Transducer
  5. MBI Overload Protected Miniature Beam Load Cell
  6. LBMP Overload Protected Compression Load Button Load Cell
  7. SMT Overload Protected S-Type Load Cell
  8. WMCP Overload Protected Stainless Steel Miniature Load Cell with Male Threads

By optimizing the mechanical design of load cells to minimize their sensitivity to off-axis loading this can include use of materials, such as composites or alloys, which are more resistant to deformation and strain. It also includes the use of specialized geometries that can help to distribute forces more evenly and reduce the effects of off-axis loading.

As well, engineers utilize built-in electronic compensation to correct for the effects of off-axis loading. This may involve using additional sensors or feedback loops to monitor the load cell’s response to external forces and adjust the output accordingly.

Interface engineers use a multi-disciplinary approach to designing load cells that are more resistant to off-axis loading. By combining advances in mechanical design, electronics, manufacturing, and simulation, they are creating load cells that are the most accurate in by classification in the world.

ADDITIONAL RESOURCES

ConvexBT – The Most Innovative Load Button Load Cell

Eccentric Loading Analysis for SuperSC S-Type Miniature Load Cell White Paper

Addressing Off-Axis Loads and Temperature Sensitive Applications

Benefits of Proof Loading Verification

How Do Load Cells Work?

Load Cell Sensitivity 101

Load cell sensitivity refers to the relationship between the input force applied to a load cell and the output signal it generates. It is a measure of the load cell’s responsiveness to changes in the applied force and is expressed in units of mV/V (millivolts per volt) or micro-volts per volt.

When determining the accuracy of a load cell, load cell sensitivity is an important parameter. A higher sensitivity means that even small changes in the applied force will result in a larger change in the output signal, making the load cell more sensitive and accurate.

It is critical to understand that load cell sensitivity and accuracy are closely related. A high sensitivity load cell will generate a larger output signal for the same applied force, which can increase the accuracy of the measurement. In general, the accuracy of a load cell is a combination of its sensitivity and the quality of its design and construction. Interface specializes in precision accuracy, which is important when considering the use case for your load cell.  As defined by the specifications, a high-quality load cell with appropriate sensitivity will provide accurate and consistent measurements, while a load cell with low sensitivity or poor quality may provide less accurate measurements.

Most load cells are designed to measure force in one certain direction, which is determined by the way the load cell is mounted. Inappropriate loading will cause side and eccentric load, which risks reducing the life of load cells and distorting measurement results.

Eccentric load sensitivity is measured by eccentric load, which is any load applied parallel to but not concentric with the primary axis. Side load is any load at the point of axial load application at 90 degrees to the primary axis.

To achieve a desired level of accuracy, it is important to choose a load cell with the appropriate sensitivity for the application. Load cell sensitivity can be affected by factors such as temperature, temperature gradients, and environmental conditions, so it is important to take these factors into account when selecting a load cell.

What conditions impact load cell sensitivity? Load cell sensitivity can be impacted by several factors, including:

  • Temperature: Changes in temperature can cause thermal expansion or contraction of the load cell material, affecting the output signal and reducing accuracy.
  • Temperature gradients: The presence of temperature gradients within the load cell can cause differential expansion or contraction of different parts of the load cell, further affecting the output signal and reducing accuracy.
  • Environmental conditions: Exposure to harsh environments, such as moisture, vibration, and shock, can cause damage or degradation to the load cell, reducing its sensitivity and accuracy.
  • Load cell orientation: The orientation of the load cell can impact the output signal, especially in applications where the load is applied at an angle.
  • Mechanical stresses: The presence of mechanical stresses, such as bending or twisting, can affect the output signal and reduce accuracy.
  • Aging: Over time, the load cell may experience degradation or wear and tear, reducing its sensitivity and accuracy. This is where regular calibration plays a role in the lifetime of your load cell.

It is important to consider these factors when selecting a load cell and to properly maintain and calibrate the load cell to ensure optimal sensitivity and accuracy over time.

Calibration is a process that involves adjusting the output signal of a load cell to ensure that it accurately reflects the applied force. Calibration improves load cell sensitivity by correcting for any errors or inaccuracies in the output signal, ensuring that the load cell provides accurate and consistent readings over time.

During calibration, a series of known loads are applied to the load cell, and the corresponding output signals are measured. These measurements are used to create a calibration curve that represents the relationship between the applied force and the output signal.

Calibration helps to correct for various factors that can affect load cell sensitivity, such as temperature, environmental conditions, and mechanical stresses. By adjusting the output signal to accurately reflect the applied force, calibration helps to ensure that the load cell provides accurate and consistent readings, even in challenging conditions. Interface recommends calibration of every load cell at least once a year for regular sensitivity maintenance.

Interface engineers design high accuracy, quality load cells with appropriate sensitivity that provides accurate and consistent measurements. It is important to consider both sensitivity and accuracy when selecting a load cell for an application and to regularly calibrate the load cell to ensure that it continues to provide accurate and reliable measurements over time.

Miniature Torque Transducers 101

The demands for miniature force and torque measurement solutions are on the rise. Modernization of products along with complex, compact products requires small and robust test and measurement solutions.

Miniature torque transducers are small sensors that measure torque, or rotational force, in mechanical systems. They are used to monitor and control the torque output of motors, gears, and other rotating components. These mini transducers come in various sizes and designs, ranging from simple rotary sensors to complex multi-axis sensors. The range of options provide precise, real-time measurements for all types of torque measurement applications.

COMMON USE CASES FOR MINIATURE TORQUE TRANSDUCERS

  • Quality control: In many manufacturing and smart factory processes, miniature torque transducers can provide real-time measurements of the torque being applied by production machines and equipment, allowing for adjustments to be made as needed in instantly to improve product quality.
  • Performance optimization: By measuring the torque output of a motor or other rotating component, a miniature torque transducer can optimize performance, resulting in improved efficiency, longer lifespan, and reduced maintenance requirements.
  • Safety: In certain applications, it is important to monitor the torque being applied to ensure that it does not exceed a certain limit. This is particularly important in safety-critical applications, where excessive torque can lead to equipment failure and potential harm to people and property.
  • Research and development: Miniature torque transducers assist in testing and validating new products, processes, and technologies. By providing accurate, real-time measurements of torque, these sensors can help to improve product design and performance.

Miniature torque transducers are being used in an increasing number of applications, including in the production and design of automotive and vehicle components, for use with machines and lab equipment, in robotics and industrial automation monitoring, R&D of medical devices, and in testing viability, durability and safety of consumer products. Interface’s event, Taking Measure of Miniature Load Cells, explores the topic of using miniature measure devices.

Interface continues to add new types of miniature torque transducers to our expanding line of these sensor types. In fact, Interface has multiple U.S. patents for our MRT products and our proprietary overload protection designs.

INTERFACE MINIATURE TORQUE TRANSDUCERS

Proven by many Interface customers, our miniature torque transducers can provide valuable and accurate measurement data for a wide range of use cases and applications, making them an important device for engineers across all types of industries.

Robotic Surgery Force Feedback Solution Using Mini Torque Transducers

A biomechanical medical device company needs to test the force, torque, and tactile feedback from their robotic arm used for invasive surgery. A number of Interface’s miniature force and torque measurement products are used on this robotic arm. These include the ConvexBT Load Button Load Cell, SMTM Micro S-Type Load Cell, and the MRTP Miniature Overload Protected Flange Style Reaction Torque Transducer. Force results can be collected when connected to the BX8 8-Channel Data Acquisition and Amplifier, and viewed when attached to the a laptop. Read more about the results here.

Furthermore, the demand for miniature sensors is also being driven by the need for more cost-effective sensing solutions. With the cost of miniaturization decreasing, more and more companies are looking to incorporate miniature sensors into their products to gain a competitive advantage.

The trend towards miniaturization is expected to continue in the coming years, which will likely lead to further growth in the demand for miniature sensors including Interface’s miniature torque transducers.

Additional Resources

Anniversary of Interface Miniature Torque Transducers

Choosing the Right Torque Transducer

Flange Style Load Cells and Torque Transducers 101

Insights in Torque Testing Featured in Quality Magazine

 

 

Data Acquisition Systems 101

Engineers and testing professionals use data acquisition systems to enable smart decisions. The data retrieved through DAQ systems empower users to identify points of failure, optimize performance, and create efficiencies in products and processes.

When it comes to measuring force, the accuracy and reliability of the sensor is a critical component to receiving quality data. The data acquired from measurement devices, including load cells, torque transducers, and other types of force sensors, is valuable for product development, research, and robust testing to ensure performance and durability of all types of innovations. Ultimately, utilizing precision-based data provides enhanced control and response for all types of applications and use cases. Interface provides a wide range of data acquisition instrumentation that is easily paired with our force measurement products.

By definition, a data acquisition system is a collection of components used to acquire data via analog signals and converting them to digital form for storage, research, and analysis. Data acquisition systems, also called DAQ systems, typically are made up of sensors, signal conditioners, converters, plus computer hardware and software for logging and analysis. Interface experts are available to help pair the transducers with the right instrumentation.

The data acquired through the measurement device is only useful if it is logged for analysis and traceability. This is where instrumentation, in particular DAQ systems come into play, in not only transferring data, but also obtaining the right type of data in a format and data transfer method that works with existing user systems.

Data acquisition that utilizes analog output has long been the standard in the industry. As new requirements for use cases and applications grow, test and measurement professionals and engineers find these systems advantageous because of the lower cost, easy integration, and scalability. They also like the advantage of daisy-chaining multiple sensors together on a single cable run to maximize the amount of data through single tests. More data improves the quality of analysis and monitoring.

Advancements in sensor technologies coincide with growing demands for digitalization and to gather more testing data. This is seen using multi-axis sensors, along with requirements for multi-channel acquisition that can integrate into existing systems already designed with specific digital connections and protocols.

In addition to improving speed of data output, acquisition systems offer an abundance of value-added benefits. This is primarily due to the digital signal, as they are less susceptible to noise and are more secure. The systems also typically have built in error detection. Digital signals are best for transmitting signals across longer distances or when you need to allow for simultaneous multi-directional transmissions. Many people like the ease of integration, both into existing networks as well as with other testing devices.

Data acquisition systems and accessories come in many shapes and sizes, wired and wireless and there are also a handful of different software options in different systems. All these various products such as digital instruments, input and output modules, cables, monitors, and accessories. Interface offers a range of DAQ products, including full systems including the sensors.

Interface Complete Data Acquisition Systems

BlueDAQ Data QA Pack

Force sensors can easily connect via the BlueDAQ Family Data AQ Pack for fast and accurate data acquisition. This solution provides a convenient way to view the test results from transducers including single axis, dual axis, 3-axis, and 6-axis multi-axis sensors. Check out our BX8-HD44 BlueDAQ Series Data Acquisition System for Multi-Axis Sensors with Lab Enclosure.

T-USB-VS Rotary Torque Transducer Data AQ Pack

Connecting dynamic torque transducers to the T-USB Rotary Torque Transducer Data Acquisition Pack will provide you with convenient way to view the test results for your torque transducers that have internal USB functionality.

WTS Wireless Data AQ Pack

Utilizing the popular WTS Wireless Data Acquisition Pack provides convenient wireless communication with speeds up to 200 samples per second. Learn more in our Interface Wireless Telemetry System Review. See the complete line Interface WTS here.

DIG-USB PC Interface Module Data AQ Pack

Interface’s DIG-USB Data Acquisition Pack enables a straightforward way to view the test results our load cells or torque transducers. Check out the popular DIG-USB Output Module and the DIG-USB-F Fast USB Output Module.

9325 Portable Display Data AQ Pack

Interface’s 9325 Data Acquisition Pack makes your system portable. The 9325 allows simple display of strain bridge based measurements such as load cells, torque transducers, and other mV/V output transducers with sensitivity up to +/-1 V/V.

INF-USB-VS3 PC Interface Module Data AQ Pack

Our INF-USB-VS3 Data Acquisition Pack connects Interface mV/V load cells or torque transducers to provide real-time data analysis.  Here is more information about the INF-USB3 Universal Serial Bus Single Channel PC Interface Module.

Interface Data Acquisition Systems are modular. We offer the complete system, including enclosures, along with single components to complete a system. Consult with our application engineers to learn what system would be best for your test and measurement programs.

Data AQ Pack Brochure

 

 

 

High Temperature Load Cells 101

The temperature rating of a strain gage type load cell is primarily dependent upon the materials selected for its construction. While the load bearing element is normally good for a wide temperature range, the non-metallic materials in a load cell are quite sensitive to temperature extremes and must be carefully selected to ensure they can withstand high or low temperatures.

Considerations in designing the right solution for high temperatures includes understanding requirements for the strain gage materials, adhesives, and insulations. With any set of materials, performance at temperature extremes is frequently compromised, relative to performance at nominal temperatures.

Most Interface standard load cell models are rated for an upper operating temperature limit of 200°F. Special models can be engineered to operate as high as 500°F by request for customization. We also carry a line of intrinsically safe load cells that are designed and used in harsh environments.

Interface offers a range of high temperature load cells in different form factors, from miniature to jumbo, including:

Compensated temperature range is the range of temperature over which the load cell is compensated to maintain output and zero balance within specified limits. Operating temperature range is the extremes of ambient temperature within which the load cell will operate without permanent adverse change to any of its performance characteristics.

There are four parameters to consider when examining temperature performance of high temperature load cells.

  • Temperature Effect on Zero: The change in zero balance that is due to a change in ambient temperature. It is normally expressed as the slope of a chord spanning the compensated temperature range.
  • Temperature Effect on Output: The change in output that is due to a change in ambient temperature. It is normally expressed as the slope of a chord spanning the compensated temperature range. Note that output is defined as a net value, as the zero-load signal is always subtracted from the loaded signal.
  • Creep: The change in load cell signal that occurs with time while under load, and with all environmental conditions and other variables remaining constant. It is normally expressed in units of % of applied load over a specified time interval.
  • Zero Return: The degree to which the initial zero balance is maintained after application and release of a load, while environmental conditions and other variables remain constant.

Interface load cells are temperature compensated for zero balance. By compensating for zero balance, we can flatten the curve in the relationship between temperature and zero balance. An uncompensated load cell has a much more severe curve, which impacts the accuracy and overall performance. Read more in Understanding Load Cell Temperature Compensation.

Another consideration for utilizing load cells in high temperature environments or exposing load cells to high temperatures is the use of cables. Since cable resistance is a function of temperature, the cable response to temperature change affects the thermal span characteristics of a load cell cable system.  Interface recommends consulting with your application engineer to see if a 6-wire system can eliminate concerns. Also, for non-standard cable lengths, there will be an effect on thermal span performance. For long cable runs or high accuracy applications, this can be a significant factor.

Additional Resources

Hazardous Environment Solutions from Interface

Ruggedized Test and Measurement Solutions Webinar Recap

Coil Tubing Load Cells

Load Pins, Tension Links, & Shackles

 

Most Popular Interface Content in 2022

Interface is committed to providing valuable content and resources related to force measurement and supplemental topics based on how our customers use our products. Every year, we publish content in a variety of formats, including our blogs, newsletters, catalogs and brochures, case studies, industry solutions and white papers. In 2022, we added 125 new pieces of content, along with 109 new Interface IQ Blog posts.

Research tells us that blogs and publications are an important source to keep up with the latest developments in the field of practice. This certainly applies to test and measurement, engineering, product development and metrology. This type of material can be a fantastic way to stay informed and inspired, as well as up to date on trends and peer-related subject matter.

The question we like to answer every year, what are you reading?

Interface’s Most Read 2022 IQ Blogs

  1. 2022 Test and Measurement Industry Trends
  2. Shunt Calibration 101
  3. Force Measurement Installation Guides
  4. Types of Force Measurement Tests 101
  5. Interface Submersible Load Cells
  6. EV Battery Testing Solutions Utilize Interface Mini Load Cells
  7. Choosing the Right Torque Transducer
  8. Solutions to Advance Agriculture Smart Farming and Equipment
  9. Interface Sensors Used for Internet of Things
  10. Flange Style Load Cells and Torque Transducers 101

The subjects we right about, sometimes technical, and other times focused on use cases, are driven by our customer’s interests. Often, these subjects are relevant over an extended period. We are now entering our fifth year of the Interface IQ Blog. In fact, the most read posts on our website this year dated back as far as 2018. Are you a subscriber?

Interface’s Most Popular IQ Blogs

  1. Understanding Load Cell Temperature Compensation
  2. Strain Gages 101
  3. Load Washers 101
  4. S-Type Load Cells 101
  5. Load Pins 101
  6. Load Cell Basics Sensor Specifications
  7. Interface Engineered to Order Solutions
  8. The Anatomy of a Load Cell
  9. Understanding Uncertainty in Load Cell Calibration
  10. Load Cell 101 and What You Need to Know

Many test and measurement professionals find it valuable to read and stay current on the latest research and technical papers related in their industry. Interface produces new technical papers and case studies every year. The top technical white papers and case studies that captured the most interest in 2022 include:

Interface introduced a helpful guide in 2022 to navigate some of the content that has gained the most interest over the years. You can find this in our new 101 Force Measurement Series. It is a sequence of blogs that we add that are we categorize as 101-level references. This new guide also adds associated content on the same subject matter.

We look forward to learning from your interests and adding updated content in the coming year.

Mechanical Installation Load Cell Troubleshooting 101

The performance of a load cell force measurement system is dependent upon the reliability of the physical installation, correct interconnection of the components, proper performance of the basic components which make up the system, and calibration of the system.

Interface provides installation instructions for our products. Review the installation guide and keep on hand for installation and troubleshooting. Load cells not mounted in accordance with the manufacturer’s recommendations may not perform to the design specifications.

Always start any troubleshooting with a physical inspection of the load or weighing sensor. Resistance results from numerous factors, creating an inaccurate reading of the measurement and potential overload. If there is any appearance of dents, bending, cracks or deformation it is likely the device will need to be repaired or replaced. If none of these conditions are visible, the next step is to troubleshoot the mechanical installation.

The following is a quick checklist to reference for mechanical installation troubleshooting:

  • Check the mounting surfaces for cleanliness, flatness, and alignment
  • Check the torque of all mounting hardware
  • Check the load cell orientation
  • Check use of proper hardware as required to connect the load to the load cell
  • Check cables or output devices

Orientation is of a load cell is defined by the “dead” end on mechanical reference or load forcing source and the “live” end connected to the load to be measured by the cell. Dead end is the end closest mechanically to the cable exit or connector. A fundamental requirement is that there be one, and only one, load path.  This load path must be through the load axis of the load cell. This may sound elementary; however, it is a commonly overlooked problem.

Check all hardware and accessories when troubleshooting during mechanical installation, including all connectors, cables, thread sizes, jam nuts, swivels, mounts, and bolts. It is always important to also thoroughly inspect the cables used in a system. Evaluate the cable to ensure there is no crimping, cuts, or exposed wires. This is a common cause of mechanical installation failure.

For a quick reference, here is a discussion about what a healthy load cell should look like, and any visual clues that may potentially be a sign for an improperly working load cell.

For more helpful guides and troubleshooting tips, please visit the Interface Technical Library. Interface provides technical support for additional questions related to installation or if there is help needed in troubleshooting any of our products. Contact us here and let us know how we can help.

Additional Resources

Force Measurement Installation Guides

I’ve Got a Load Cell, Now What Play List

Force Measurement Accessories 101

 

Metrologists and Calibration Technicians 101

Interface works with metrologists and calibration technicians worldwide. We are a partner, supplier of calibration grade products they use, and participants in research to advance the science of measurement. We are also proud team members with experienced experts in measurement, including our esteemed force measurement engineers and calibration technicians at Interface.

By simple definition, a metrologist is a scientist who researches and applies the science of measurement. Working in the field of metrology, they often create processes and engineer tools and systems used to measure objects, such as load cell calibration tools used to accurately to measure applied force.

Engineers and technicians work in collaboration with metrologists in the design of products and devices used for measuring objects. Metrologists are keen to maintain the accuracy standards of measurements for organizations, product makers, and manufacturers of measurement devices.

Metrologists practice their expertise in test and measurement at manufacturing facilities, corporate R&D centers, independent test and calibration labs, government entities and standards organizations, as well as at higher learning institutions. The range of industries that utilize metrologists spans from aerospace to medical sciences. It is commonplace for metrologists to participate in research, product design, testing, and repair of equipment.

To preserve accuracy of performance and standards of measurement, metrologists develop calibration procedures to control performance of devices. They use these techniques to also identify enhancements and continuous improvement initiatives. Metrology professionals often share their findings with metrologist groups and associations, for purposes of scientific research and development within the field of measurement science. NIST publishes reports related to metrology from contributors around the world. You can find thousands of reports here.

Calibration technicians calibrate test and measurement equipment, as well as provide quality inspection, installation, troubleshooting support, and regular maintenance. Cal techs operate the machines used to validate performance, then report on the findings.

A calibration technician can work in production or manufacturing environments, onsite calibration labs, or for independent labs that provide services to users and makers of measurement devices. It is quite common to find calibration labs staffed with experience technicians as a part of a manufacturer’s facility, across most industries. Depending on the size of the manufacturer, this could include a small in-house lab or multiple lab sites. These labs are stocked with a variety of sensors, rigs, machines, and tools. As noted by many of our representative firms and onsite customer visits, they often will find shelves of blue load cells ready for use at any time for test and measurement projects and calibration services.

Interface supplies calibration labs with all types of measurement calibration grade transducers and equipment, including:

Calibration technicians work with various testing and calibrating tools and technologies. The role requires a mix of expertise in the science and application of measurement. Interface has multiple onsite calibration labs with full testing rigs, machines, operating tools, instrumentation, and software used for tracking performance. Interface does calibrate every product we manufacture, to certify performance prior to releasing to the customer.

Interface Services Calibration Technicians operate within our Services Calibration and Repair Department at our Interface production facilities in Arizona. They provide services for Interface products for annual and regular calibration check-ups, as well as diagnostic, repair, and warranty evaluations. Interface recommends annual calibration services. If you need to schedule a service, go here.

Technicians perform calibrations and any additional needed services for customer owned equipment, works with quality and inspection managers to maintain the proper records within the services process application. They ensure that the measurements taken with our equipment are accurate. Interface calibration techs work on multiple shifts for a 24/6 operation. Interface is adding qualified technicians to our team to meet the demands in production and services.

Calibration technicians perform inspection, testing and validation to ensure conformance to established accuracy and calibration standards. They also help to create calibration procedures and help n sourcing errors or quality issues reported during calibration activities.

Requirements for Interface Calibration Technicians include:

  • Perform basic to mid-range diagnostics of force measurement equipment
  • Work collaboratively in a team environment to complete discrete tasks
  • Print and Review Calibration Certificates Competencies
  • Able to use fine motor skills to calibrate product
  • Able to work with hand and power tools, lifts, electronic test equipment, soldering and indicators
  • Understands industry and quality concepts and standards such as ISO, A2LA, NIST
  • Offers suggestions and improvements as they see them
  • Organize and schedule work in progress
  • Experience in calibration technology, science, engineering, or a related field

You can apply for positions Interface Calibration Technician jobs here.

For metrologists and calibration technicians, quality and control require strict adherence to ensure that the products and equipment are performing properly. As measurement is exact, both are responsible for performing routine audits and quality inspections to maintain compliance with good calibration practices.

ADDITIONAL RESOURCES

Regular Calibration Service Maintains Load Cell Accuracy

Top Five Reasons Why Calibration Matters

Shunt Calibration 101

Extending Transducer Calibration Range by Extrapolation

Strain Gage Design Under Eccentric Load WRSGC Presentation

Specifying Accuracy Requirements When Selecting Load Cells