Posts

Bending Beam Load Cell Basics

Bending beam load cells are a versatile and cost-effective solution for many weighing and force measurement applications. These types of miniature load cells are small in dimension, which makes them ideal solutions for compact testing environments and for embedding into machines or products for continuous performance measurement.

The use of bending beam load cells expands across industries and applications, for weighing scales, medical devices, industrial process controls, robotic designs, packaging machinery and civil engineering projects.

How Bending Beam Load Cells Work

A bending beam load cell converts a force applied to it into an electrical signal by measuring the flexure of the beam. This is done by attaching strain gages to the beam. When the beam bends, the strain gages change their resistance, which is then converted into an electrical signal by a Wheatstone bridge circuit. The output signal is proportional to the applied load.

The bending beam load cell is bolted to a support through the two mounting holes. Under the covers, you can see the large hole bored through the beam. This forms thin sections at the top and bottom surface, which concentrate the forces into the area where Interface’s proprietary strain gages are mounted on the top and bottom faces of the beam. The gages may be mounted on the outside surface, as shown, or inside the large hole.

The compression load is applied at the end opposite from the two mounting holes, usually onto a load button that the user inserts in the loading hole.

MB Miniature Beam Load Cell

MB MINI BEAM LOAD CELL

The Interface Model MB is a miniature beam load cell used in test machines and a variety of low capacity applications.

  • Standard Capacities are 5 to 250 lbf (22.2 N to 1.11 kN)
  • Proprietary Interface temperature compensated strain gages
  • Performance to 0.03%
  • Low height – 0.99 in (25.1 mm)
  • Eccentric load compensated
  • ±0.0008% /˚F – max temperature effect on output
  • Low deflection

MBI Overload Protected Miniature Beam Load Cell

Interface’s Model MBI Overload Protected Miniature Beam Load Cell has better resistance to off-axis loads then other similar load cells and is fatigue rated.

  • Standard capacities from 2 to 10 lbf (10 to 50 N)
  • Proprietary Interface temperature compensated strain gages
  • Performance to 0.03%
  • Low height – 1in max
  • ±0.0008% /˚F – max temperature effect on output
  • 10x overload protection

MBP Overload Protected Miniature Beam Load Cell

Our Model MBP series Mini load cells provide a similar performance to Model MB series with the added safeguard of internal overload protection. This patented overload protection is accomplished via hard stops that are EDM machined into the load cell flexure. This provides a greater overload protection (2.5-10lbf ±1000% of full scale capacity, 100 N ±500% of full scale capacity), giving the user added protection in more severe applications.

  • Standard capacities from 2 to 10 lbf (10 to 50 N)
  • Proprietary Interface temperature compensated strain gages
  • 10x overload protection
  • Low height – 0.99 in (25.1 mm)
  • ±0.0008% /˚F temp. effect on output
  • 5′ Integral Cable (custom lengths available upon request)
  • NIST Traceable Calibration Certificate

MBS Parallelogram Load Cell

The Interface MBS Parallelogram load cell is made of lightweight aluminum construction and highly suitable for medical and robotics applications.

  • Capacities from 2.2 to 10 lbf (9.8 to 44.5 N)
  • Lightweight
  • Nonlinearity error 0.02% FS
  • Ideal for OEM applications

Double Bending Beam Cells

A very useful variation on the bending beam design is achieved by forming two bending beams into one cell. This allows the loading fixtures to be attached at the threaded holes on the center line, between the beams, which makes the sensitive axis pass through the cell on a single line of action.

Bending Beam Load Cell Applications

Material testing is a common application for bending beam load cells. This type of miniature load cell measures the forces applied to materials with a high degree of accuracy to determine stiffness, strength and durability of the specimen.

It is quite common to find bending beam load cells in industrial automation machines and robots to precisely measure the forces required for control, safety and efficiency. In robotics specifically, bending beam load cells will measure the force applied to the robot’s arms and grippers. The data is used to control the robot’s movements and to ensure that it is not damaging the objects it is handling.

Aerospace engineering have long used bending beam load cells in design, testing and manufacturing of aircraft and spacecraft. Automotive engineering use bending beam load cells to design and test vehicles for safety and reliability.

Due to Interface’s ability to custom design bending beam solutions that meet strict size, capacity and accuracy requirements, our products are commonly used in medical and healthcare applications.

Bending Beam Application for Medical Device Testing

In this application, the medical device product lab needs to apply known forces to stent and catheters to ensure they pass all necessary strength and flexibility testing. MBP Overload Protected Beam Miniature Load Cell is placed behind the guide wire for the stent or catheter. The motor will spin the linear drive, push the load cell, and guide the wire through the testing maze. The bending beam load cell connects to the DIG-USB PC Interface Module to record and store testing data for analysis. Read more.

Bending Beam Application for Vertical Farming

Vertical farming is the production of produce in a vertical manner using smart technology systems, while indoors using an irrigation system. A wireless force measurement solution is needed to monitor the amount of water being used, to ensure the produce is being watered just the right amount. Interface suggests installing four MBI Overload Protected Miniature Beam Load Cells under each corner of the trays of the produce to accurate measure the weight during watering. A JB104SS 4-Channel Stainless Steel Junction Box connects to each bending beam cell and to a WTS-AM-1E acquisition module. The device wirelessly transmits the sum weight to the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, and the WTS-BS-6 Wireless Telemetry Dongle Base Station. Interface’s Wireless Telemetry System monitored and weighed the amount of water being used on the produce in this vertical farming system to increase yield and conversation. Read more here.

Additional Resources

How Do Load Cells Work?

The Basics Of Shear And Bending Beams

Interface Mini™ Load Cell Selection Guide

Introducing Interface Load Cell Selection Guides

The Anatomy Of A Load Cell

Mini Load Cells 101

Load Cell 101 And What You Need To Know

Load Cell Test Stands 101

Load cell test stands are important devices for manufacturers and testing engineers who need to measure the force or torque applied to an object, test specimen, or product. They are typically made up of a frame, one or more load cells, software, and data acquisition instrumentation.

How do load cell test stands work?

Interface load cells are sensors that convert force into an electrical signal. This signal is then amplified and sent to the test stand’s software, which displays and records the force data. The software can also be used to control the test stand, such as setting the speed and duration of a test.

Test stands are used to hold the test object or device and apply force or torque to it. They should be designed to provide a stable and consistent testing environment. It is typically designed to accommodate a wide range of objects of different sizes and shapes. Often a reconfigurable structure to adapt from test to test.

Test stands may have various components, such as a base or base plate, columns, a crosshead, and load introduction devices. Interface provides high-accuracy load cells, instrumentation and DAQ systems, software and accessories designed for use in various types of test stands.

What are the different types of load cell test stands?

There are two main types of load cell test stands: motorized and manual. Motorized test stands are more advanced and can be used for more demanding testing applications. They typically have features such as programmable speed and force control, as well as data logging capabilities. Manual test stands are less expensive and easier to use, but they are not as versatile as motorized test stands.

A test stand and a load frame are both mechanical structures used in materials testing, but they differ in their functions and designs.

The test stand can be a test bench or structure on a test bed plate. These assemblies are designed to rigidly hold an object while it is being subjected to external forces. These forces could be introduced from all angles and orientations and cover low cycle design limit to long duration fatigue cycle testing.

A load frame, on the other hand, is a machine that is specifically designed to apply and measure axial or torsion forces during material or small component testing.

Most Common Requirements for Load Cell Test Stands

Testing professionals, engineers and metrologists require a load cell test stand to perform accurate and precise measurements. The primary features of a test stand include:

  • High accuracy: The load cell test stand must be able to measure force or torque with a high degree of accuracy. This is important to ensure that the measurements are reliable and repeatable. Confidence in the data must be validated through accuracy of measurement.
  • Versatility: The load cell test stand must be able to be used for a variety of testing applications. Test lab professionals, engineers and metrologists need equipment that can perform a wide range of product and material tests. This also includes interchangeable sensors, depending on the capacity and type of test, such as tension or fatigue.
  • Repeatability: The load cell test stand must be able to repeat measurements with high precision. This is important to verify the accuracy of measurements over time, through continuous use and even high cycle counts.
  • Safety: The load cell test stand must be safe to use, even when testing products under high loads. Measurements are not compromised by safety concerns.
  • Ease of use: The load cell test stand must be easy to use, even for users with limited technical knowledge. This is important for testing professionals to be able to quickly and easily set up and use the test stand.

Load cell test stand requirements can vary based on the type of testing projects and materials. Many test stands are standard; however, complex testing programs often require custom test stands that are designed and calibrated for specific use cases. Interface provide load cells, instrumentation and software designed for use in test stands.

Test Stand Sensor Considerations

  • Ensure sensors are properly sized for capacity, cycle, and extraneous load considerations.
  • Multiple bridges are good feature for redundancy and data validation.
  • Thread adapters and connector protectors must be considered in choosing the sensor for a specific test stand application.
  • Multi-axis data capture often requires robust instrumentation to take full advantage of the data.
  • Invest in versatility and ruggedness to maximize return.

Additional Test Stand Options

  • Programmable speed and force controllers help to regulate the rate at which the load is applied to the product, as well as the maximum force that can be applied during a given test period or cycle.
  • Data logging instrumentation records the force data for each test. This data can then be used to analyze the results of the test and to make sure that the product meets the required specifications.
  • Remote monitoring and controls help with test stand use from a remote location. This can be useful to run tests without being physically present at the test stand.

There are many different types of load cell test stands, so it is important to choose one that is right for your specific needs. When selecting or building a load cell test stand, consider the weight or force that you need to measure, the accuracy and precision, the environment in which the test stand will be used and the equipment budget.  This is a topic we detailed in our Testing Lab Essentials Webinar. Watch this portion of the online technical seminar below.

Load Cell Test Stand Use Cases and Applications

  • Aerospace test stands are used to measure the strength of aircraft structures. Test stands are used to test the performance and durability of aircraft components, such as wings, fuselages, and engines. They are also used to test the structural integrity of aircraft materials, such as composites and metals.
  • Material test stands can be used to exam the strength, stiffness, and toughness of materials.
  • Structural test stands are used for small capacity testing, as well as large amounts of force to measure the structural integrity of buildings, bridges, and other formations.
  • Dynamic test stands are used to measure the performance of products under different environmental conditions, such as shock and vibration testing.
  • Medical manufacturers need to test the performance of medical devices. Test stands are used to test the performance and durability of medical devices, such as pacemakers and defibrillators. They are also used to test the accuracy of medical instruments and in-home medical equipment, as the safety of user is paramount to all other requirements.
  • Automotive labs use test the performance of engines, transmissions, brakes and other components. They are also used to test the durability of automotive materials, such as tires and plastics.
  • Consumer product manufacturers and OEMs must test the durability to ensure customer satisfaction and reliability of the product. Test stands are used in testing toys, appliances, tools, and electronic devices.
  • Industrial automation component makers and OEMs must test the strength of machine parts and materials used in product lines, machine tools, and robots. They are also used to test the safety of industrial equipment, such as forklifts and cranes.

Load cell test stands are an essential tool to accurately measure the forces acting on a test specimen. By using a load cell test stand, testing engineers can ensure that their equipment is operating within its design limits and that it is safe to use. If you have questions about building or upgrading your test stand, be sure to consult with our application engineers.

How Load Cells Are Transforming the Construction Industry

The construction industry is one the most universal, growing, and dangerous industries in the world. Interface force measurement solutions are used for all types of construction applications from bridge and high-rise building projects to foundation load tests and structural monitoring. Our sensors and instrumentation are used in crane and heavy lifting operations, material testing and equipment calibration.

Accuracy and quality of all measurement products used for design, testing, monitoring, and equipment evaluations is imperative in protecting the project’s assets and workers. One of the leading causes of construction accidents is overloading equipment. When equipment is overloaded, it can fail, leading to serious injuries. It is essential to utilize high accuracy load cell technologies to measure the amount of force being applied to construction equipment.

Interface force measurement solutions can help to prevent overloading accidents by using the measurement data to ensure that equipment is not being extended beyond its safety capabilities. Force measurement solutions can also be used to monitor the performance of equipment and identify potential problems before they lead to an accident.

Interface offers a wide variety of sensor solutions for construction equipment and material testing. Our load cells offer precise measurements of applied forces, furnishing essential data regarding the structural response under various load circumstances. This data plays a critical role in evaluating structural integrity, detecting potential vulnerabilities, and optimizing design to guarantee the safety and dependability of infrastructure.

Interface force measurement solutions can help to improve efficiency and productivity in the construction industry in all areas including engineering, testing and maintenance. By monitoring the performance of equipment, construction companies can identify areas where they can improve efficiency.

It is common to find Interface load cells, including load pins, load shackles, miniature and even jumbo load cells in use for various forms of construction projects, equipment and tools. These products, as well as torque transducers, instrumentation and wireless systems are frequently used in the testing and monitoring of the machinery, rigging and lifting devices, gear, and heavy duty vehicles that are used in various stages of building.

Interface provides various sensors for a range of construction use cases around the world, including:

  • Residential and commercial buildings
  • Infrastructure programs
  • Industrial construction
  • Material testing machines
  • Civil engineering projects
  • Mining and tunneling
  • Environmental remediation
  • Heavy equipment manufacturing
  • Vehicle OEMS
  • Cranes and lifting equipment


Construction is an ever-present and ever-growing industry estimated to reach nearly $13T in global spending with broad and diverse use of measurement solutions. From single dwelling construction tools to heavy machines used to move concrete slabs, measurement is fundamental in construction. Included below we have provided a few examples of how our sensors are being used in construction.

Construction Reach Stacker

A reach stacker is a vehicle used in construction site to lift, move, and stack heavy containers. A force monitoring system was needed to ensure the safety of surrounding personnel, and if the reach stacker can lift heavy loads. Interface’s WTSLP Wireless Stainless Steel Load Pins were installed into the corners of the lifting mechanism of the reach stacker, where heavy loaded containers are lifted and moved. The force results were then wirelessly transmitted to both the WTS-BS-1-HS Wireless Handheld Display for Single Transmitters, or directly to the customer’s PC with the WTS-BS-6 Wireless Telemetry Dongle Base Station. Using this solution, the customer was able to monitor their reach stacker with Interface’s Wireless Telemetry System and ensure its ability to lift heavy loads on site.

Bridge Construction Wind Monitoring

Wind monitoring is a necessary operation during bridge constructions. Strong winds can destroy a bridge under construction since it is a work in progress with poor structural design. Monitoring these winds in real time is much more accurate than using predicted weather forecasts. Interface suggested installing the WTS-WSS Wireless Wind Speed Transmitter Module on the highest point of construction, such as a crane. Wind speed results were wirelessly transmitted to the customer’s PC through WTS-BS-4 Wireless Base Station with USB Interface in Industrial Enclosure. It was transmitted to the WTS-BS-1 Wireless Handheld Display for Unlimited Transmitters Data can be displayed, logged, and graphed with supplied Log100 software. Interface’s WTS-WSS Wireless Wind Speed Transmitter Module combined with Interface’s Wireless Telemetry System was perfect to monitor the wind speed in real-time during the bridge’s construction.

Metal Bending Force Material Testing for Construction

A construction material supplier wanted to know how much force it takes to bend different grades of steel metal used for building and infrastructure projects. They use their metal bending machine to create different metal hardware and wanted to record the amounts of force it takes to bend the metal used for their projects. Interface suggested using a wireless method, so cables do not interfere with the machine. The WTS 1200 Standard Precision LowProfile® Wireless Load Cell was attached to the head of the hydraulic operated steel bender. Results were wirelessly transmit to the customers PC through the WTS-BS-4 Wireless Base Station with USB Interface, where data can be displayed, logged, and graphed with supplied Log100 software. Using this solution, the customer was able to record the force results of his metal bending machine with Interface’s Wireless Telemetry System.

Interface is adept at providing solutions suited for use in construction projects, equipment and ongoing monitoring programs.  If you have questions about what products are suited for your specific project, equipment or testing programs, contact us. We are here to help.

ADDITIONAL RESOURCES

Force Measurement Solutions for the Construction Industry

Interface Solutions for Heavy Equipment

Gantry Crane Weighing

Lifting Heavy Objects

Rigging Engineers Choose Interface Measurement Solutions

Innovative Interface Lifting Solutions

Modernizing Infrastructure with Interface Sensor Technologies

Interface Solutions for Structural Testing

Why Civil Engineers Prefer Interface Products

Innovative Interface Load Pin Applications

 

 

Why Product Design Houses Choose Interface

When people think of force measurement, they often think that it is a tool for testing products. However, load cells, torque transducers and multi-axis sensors also play a fundamental role throughout the entire product design process. In fact, many products today actually design force sensors directly into products.

Product design houses are companies that fulfill outsourced design work for a variety of industries. These specialized design houses are contracted to develop and bring products to life.

A product design house primarily focuses on designing physical products or tangible goods. The services they offer to product makers, engineers, manufacturers, and innovators typically involve the entire product development lifecycle, from conceptualization and design to prototyping and manufacturing.

Due to our experience and expertise across multiple industries, Interface collaborates with product design houses in identifying the right sensors and systems to use during different stages of the design process. Whether it is for accurately measuring forces for impact and fatigue testing, identifying precise weights for packaging, modeling consumer usability, or testing material strength, Interface products are chosen by design houses based on their range of capabilities, accuracy, versatility and quality.

How Product Design Houses Use Interface Products

  • Concept Development and Prototyping: Product design houses often use Interface product design files when refining their initial product ideas or creating new concepts. When the products move into physical modeling, Interface products are used for testing and validation at this early stage.
  • Industrial Design: Industrial designers use Interface load cells and other sensor products for measuring functionality of the product.
  • Design Validation and Testing: Conducting tests and simulations to validate the product’s performance, durability, and safety are the number one reason why design houses utilize Interface measurement solutions. Design houses put sensor technologies into products to provide force data for user feedback, to optimize performance, safeguard consumers and activate components.
  • Mechanical Engineering: The mechanical engineering team of a design house will connect with Interface when they are working on the technical phases of product design. Our products are used to help ensure the final product can be fabricated efficiently, performs consistently, and meets applicable safety standards.
  • Materials and Manufacturing: Experts at design houses that are versed in materials science and manufacturing processes will consult with Interface in finding measurement solutions that can access and validate material testing and production systems. Within the manufacturing realm, these devices are employed in quality control processes to ensure consistent product standards.
  • Packaging: If a product has packaging that must meet durability, temperature, pressure or fatigue requirements, Interface will provide sensors and instrumentation for design testing.
  • Regulatory Compliance and Certification Support: For products subject to regulatory standards, design houses utilize high accuracy measurement solutions in creating specifications, reporting, and compliance requirements before moving to market.

These services can vary from one product design house to another, and some design houses may specialize in specific industries or types of products.

Product design houses leverage Interface load cells across various industries to measure and monitor forces and weights with precision. For example, in medical device development, Interface miniature load cells are used for patient lifts, ensuring secure and accurate weight measurements.

Whether used in material testing, robotics, or agricultural machinery, load cells enable product design houses to create innovative solutions tailored to specific industry requirements, enhancing overall product performance and reliability. Here are a few examples of house product designers use force measurement solutions during the design phase.

Furniture Fatigue Cycle Testing

To meet safety protocols in relation to the manufacturing of various furniture products, fatigue testing, shock testing, and proof testing must be rigorously performed before diffusion into the marketplace, and into the homes of consumers. Force testing of furniture products is critical in determining the posted max loads to protect manufacturers from liability due to damage that might result from the misuse of those products and overloading. Using Interface’s SSMF Fatigue Rated S-Type Load Cell along with Interface’s 9890 Strain Gage, Load Cell, & mV/V Indicator provided a solution that measures the force being applied in fatigue cycle testing of a furniture product, in this case, testing the rocking mechanism in an office chair. Throughout the testing phase, changes were made to the design to improve the safety and life of the furniture, ensuring product quality and protecting the manufacturer from future liability.

Self-Checkout Kiosk Functional Testing

To assess the design of self-checkout kiosks, part of the development cycle is to ensure the weighing feature is functioning properly with the right amount of sensitivity when customers want to weigh products like fruits or vegetables. The designers also needed a system that measures the force it takes for the self-checkout kiosk to activate a response for consumers. Interface suggested installing SSB Load Beam Load Cells under the plate where items are weighed. When connected to the WTS-AM-1E Wireless Strain Bridge Transmitter Module, force results are wirelessly transmitted to the WTS-BS-6 Wireless Telemetry Dongle Base Station on the customer’s PC. Data can be logged and graphed with included Log100 software. Interface’s wireless force system successfully measured the amount of force it took for the self-checkout kiosk to react and ensure it is functioning properly.

 

Design of a Prosthetic Foot

In the design of this medical device, the product designers need to know how the foot responds as it is loaded during different stances. To measure this, Interface’s 3A120 3-Axis Load Cell was installed between the leg socket and the prosthetic foot. The 3A120 was then connected to the BSC4D Multi-Channel Bridge Amplifier and Computer Interface Module. Using this solution, data was logged for X, Y, and Z axis. The design house was able to review the results and identify premature flat foot and dead spots during foot’s production for consumer use. They utilized this vital information to make improvements to the design.

Interface works with design houses and product design engineers across the continuum of a product’s development through go-to-market. We supply standard measurement sensors like our load cells, along with custom solutions that are uniquely engineered for a particular use case.

ADDITIONAL RESOURCES

Why Product Design Engineers Choose Interface

Interface Solutions for Consumer Products

Introducing the Interface Consumer Product Testing Case Study

Interface Mini Load Cells Growing in Product Use and Testing

Are Load Cells Used in Vacuum Environments?

Vacuum testing labs are essential for ensuring that products and materials are safe and dependable in vacuum environments. A vacuum environment is an area where there is little or no matter. This means that there are very few gas molecules present, and the pressure is incredibly low. Vacuum environments are often created using vacuum pumps, which remove gas molecules from an enclosed space.

Vacuum environments are used to simulate the conditions that products and materials will experience in space or other high-altitude environments. These types of testing labs typically have a vacuum chamber that can be evacuated to an incredibly low pressure. The vacuum chamber is then used to evaluate products and materials for a variety of properties. Engineers use vacuum environments in testing for reduced contamination, improving heat transfer, and to reduce the weight of products.

Tests performed in vacuum labs are used to determine the rate at which gases are released from a product or material and the ability of a product or material to withstand a vacuum without leaking. Thermal cycling tests are done to assess the ability of a product or material to withstand changes in temperature in a vacuum environment. Other tests are done to understand how the test article withstands exposure to radiation.

Vacuum testing labs are used by a variety of industries, including aerospace, medical, and defense. These labs are common for material process testing and used in R&D. Vacuum testing helps to identify potential problems with products and materials before they are used in a real vacuum environment. Engineers use this type of testing to improve the performance of products and materials and ensure they meet the required standards. Contact Interfaced to explore your options.

Can load cells be used in a vacuum environment?

Load cells can be used in a vacuum environment. However, not all load cells are created equal or suited for this specialized use case. Some load cells are designed that make them appropriate for vacuum environments, while others are not. Load cells that are not engineered to perform in vacuum environments may not be able to withstand the low pressures and outgassing that can occur in a vacuum. Using quality load cells that are manufactured by force measurement experts in sensor technologies is important in any consideration. It is critical to review the specifications and requirements with a qualified applications engineer.

Key considerations when choosing a load cell for a vacuum environment:

  • Outgassing: Load cells that are used in vacuum environments will have low outgassing rates. This means that they will not release gases into the vacuum chamber, which can contaminate the environment and interfere with measurements.
  • Mechanical strength: Load cells must be able to withstand the low pressures that can occur in a vacuum. They will also be able to withstand the conditions that can be generated by vacuum processes, such as outgassing and condensation. Form factor and model material of the load cell are important in choosing a load cell for this use case.
  • Temperature range: Load cells will need to operate in a wide range of temperatures. This is important because vacuum chambers can be very cold, especially when they are first evacuated, or when they are used to simulate high altitudes or space.

If you are looking for a load cell that can be used in a vacuum environment, please review with Interface application engineers to determine if the model fits your test requirements. We also can offer custom solutions to ensure that the load cell maintains the accuracy and performance specifications based on your exact test plan.

Can a load cell be vented for use in a vacuum testing lab?

Technically yes, you can vent a load cell to be used in vacuum. This allows the internal cavity of the load cell to equalize with external vacuum. However, this does not prevent outgassing and can cause the gages and wiring to be subject to humidity and condensation.

Cabling is extremely important when using any sensor in this environment. There are options to make the load cells wireless using Bluetooth technology.

Caution: Interface recommends that all our products used in this type of environment are designed, built, and calibrated for use in this environment. Venting an existing load cell can alter the performance and damage the cell.  By designing the load cell with venting for use, we can ensure that it will meet the vacuum test range.

Interface also can install thermocouples to work with the sensor to detect temperature in this type of testing environment. In fact, our engineers have designed load cells to package the thermocouples inside the form factor for convenience and performance benefits.

Interface engineers have worked with testing labs for decades. We are available to assist with any use case requirements to determine the best measurement solution.

Interface Solutions for Research and Development

Among the many roles of force measurement in engineering and manufacturing, the role of force sensing in research and development may be the most exciting and important. Load cells and other types of force sensors qualify and collect data on exploratory projects across a wide variety of industries. These tests determine the viability of a potential project and eventually new innovations.

Research and development are core to most businesses to stay competitive. R&D is essential in creating new products and anticipating customer demands. Whether it is assessing the viability of a new IoT home technology for consumers or designing a component used in a new surgical medical device, research is core to the technical and technological development of most any product.

In an R&D environment, force testing helps to compare product materials, determine the strength materials and components, and evaluate environmental, ergonomic, and other features. Additionally, force testing is common across industries as a quality control measure to accurately check that a given group of products meet targeted design specifications, per performance, safety, and regulatory requirements.

Interface often works with engineers whose role it is perform research and development within their organization. R&D engineers use research theories, principles, and models to perform a variety of experiments and activities. Not only do R&D engineers create new products, but they often are responsible for the redesign of existing products.

Our goal at Interface is to help R&D engineers identify the best sensor-related products they can use to work through the problems they are seeking to solve. The products we provide validate findings through highly accurate sensor test and measurement data. There are some R&D applications that need just one or two load cells and basic instrumentation to conduct the project testing. Other times Interface is asked to create an application-specific engineered to order part or design a custom measurement solution to achieve the desired test and measurement outcomes. The later is often the case if a sensor is an actual part of the product design. Interface has helped R&D engineers assess all kinds of prototypes and early designs using our precision force measurement devices.

Force measurement is used throughout the product research and development lifecycle, from ideation and prototyping, to robust testing and eventual commercialization phases.

  • IDEATION: In the ideation phase, we provide force measurement solutions for testing materials for compatibility with the idealized product’s use cases.
  • PROTOTYPING: In prototyping, force sensors help engineers select a minimum viable product (MVP) design. Sensors are used in the lab environment to validate a product or component, or as an actual embedded sensors utilized for real-time feedback and performance monitoring.
  • TESTING: When a product moves into the testing phase, it ready for a more thorough batch of tests including cycle and fatigue testing. Our load cells, torque transducers and instrumentation are commonly used in these environments. Every product will require a sensor model that fits by specifications and capacity.
  • COMMERCIALIZATION: Finally, when a product is ready for commercialization, we provide products used to run a variety of tests to ensure the product is constructed in a way that is safe for the user and meets certain force related specifications for intended use.

To give you an example of how an R&D engineer utilizes force sensors, we have included a few application examples below.

R&D Testing for Bicycle Manufacturer

A bike manufacturing company R&D engineer created a new handlebar design. They need to test the handlebar concept for their bikes during the R&D phase to ensure they will perform for a rugged trail ride experience, while ensuring safety of the recreational equipment. The R&D team took the concept and conducted fatigue tests on their handlebars to observe its structure and performance durability before mass production.  Interface suggested using Interface Mini™ product SSMF Fatigue Rated S-Type Load Cells. Two of these s-type load cells are attached on either end of the bike’s handlebar stem, where it will measure the forces applied as the handlebar undergoes its fatigue test. Results can be measured, logged, and graphed with the SI-USB Universal Serial Bus Dual Channel PC Interface Module.

Research Rig Used for Testing Prosthetic Designs

Prosthetic limbs must undergo rigorous R&D testing prior to manufacturing. These critical apparatuses are tested for extreme loading that can occur during falls, accidents, and sports movements. Fatigue testing of prosthetic components determines the expected lifespan of the components under normal usage. R&D engineers use testing data to determine whether prosthetic materials and designs will withstand the rigors of daily use and occasional high load situations. For the R&D project, various configurations of compression and tension test machines can be used depending on the type of prosthetic device being tested. Often the same machine can be used for static and fatigue testing. For this application, an SSMF Fatigue Rated S-Type Load Cell is mounted between a hydraulic actuator and the device being evaluated. During static testing, loads are applied to the specimen using the load cell signal as force feedback control of the test machine. During a fatigue test, the actuator repeatedly applies and removes the force to simulate activity such as walking. Tilt tables may be used to apply forces at various angles to simulate the heel-to-toe movement of walking or running. The 9890 Strain Gage, Load Cell, mV/V Indicator with Logging Software was used to store the research data.

 

Electric Vehicle Structural Battery Testing for Prototype

Battery technology is critical to the evolution of electric vehicles, so there are a variety of tests performed on new innovations in EV battery technology. As electric vehicles push advancements in efficiency gains, structural battery packaging is at the forefront for optimization. This drives the need to validate structural battery pack design, both in terms of life expectancy against design targets as well as crash test compliance and survivability.  Interface’s solution for this challenge included 1100 Ultra-Precision LowProfile Load Cells in-line with hydraulic or electromechanical actuators in the customer’s test stand. Also utilized were 6-Axis Load Cells to capture reactive forces transmitting through pack structure. Multi-axis measurement brings greater system level insight and improved product success. The tests performed using Interface’s force measurement products were able to validate the battery packs strong structural design.

Proving Theoretical Cutting Forces Of Rotary Ultrasonic Machining

Rotary ultrasonic machining is a hybrid process that combines diamond grinding with ultrasonic machining to provide fast, high-quality drilling of many ceramic and glass applications. This new method has been theoretically proven using computer models. Rotary ultrasonic machining generates forces of an exceedingly small magnitude. To prove this theory, any load cell used for measurement must be sensitive, while at the same time retaining high structural stiffness within a compact, low-profile envelope. Interface’s 3A120 3-Axis Load Cell was installed in the rotary ultrasonic machine to measure the forces being applied to a sample part. With clear signals and minimal crosstalk, the applied forces are recorded and stored using an the BSC4D Multi-Channel PC Interface Module. The 3-Axis load cell provided excellent data helping uncover the relationship between machine cutting parameters and the forces applied on the component. Using this knowledge, the machining process was reliably optimized for new materials and operations.

The role of Interface as it pertains to R&D is constantly growing as engineers create new innovations to solve a myriad of challenges throughout the world. We provide the most accurate and reliable force measurement systems to help advance technology across industries.

ADDITIONAL RESOURCE

Interface OEM Solutions Process

Interface Solutions for Machine Builders

Interface Solutions for Consumer Product Goods

CPG Bike Frame Fatigue Testing

CPG Treadmill Force Measurement

CPG Golf Club Swing Accuracy

Interface Sensors Used for Development and Testing of Surgical Robotics

Fitness Equipment Makers Require Extreme Accuracy

Interface Introduces SuperSC S-Type Miniature Load Cell

Interface has released its latest load cell invention, the SuperSC S-Type Miniature Load Cell. Interface’s new product is an s-type miniature load cell that offers capacities in a form factor 80% smaller and 50% lighter than other models of s-type load cells. It’s ideal for industry 4.0 applications.

The Interface SuperSC is an economical general purpose load cell with a compact design. It is perfect for all types of test and measurement applications in confined spaces and for OEM use cases with smaller product dimensions. The miniature sensor is also environmentally sealed and insensitive to off axis loading.

Designed by Interface’s engineer Raymunn Machado-Prisbrey, SuperSC comes in 12 capacities ranging from 25 to 1K lbf and 100 N to 5 kN. Six designs for international standards of measurement (metric) and six are imperial standards. They are environmentally sealed with an IP66 rating and offer high stiffness with low detection.

“S-type load cells have grown in popularity every year since their introduction in 1974 by Interface’s founder, primarily due to their design features and performance for use in diverse force measurement applications.” Mark Weathers, VP of Advanced Manufacturing and OEM Products

Due to its high capacity and compact housing, it is an ideal sensor for weighing and test machines, as well as in OEM product designs for ongoing performance measurement and monitoring. S-type load cells are some of Interface’s most popular products. The new product release of the SuperSC represents the next generation of the versatile Interface Mini product offerings.

“The SuperSC is the next generation of s-type load cells with the Interface’s distinguishable high quality, accuracy, reliability, and range of capacities, while also offering a more compact design and options for customization and embedding into products and machines,” said Mark Weathers, VP of Advanced Manufacturing and OEM Products

The Interface SuperSC is manufactured at Interface’s headquarters in Arizona. It has accessories and different build options, including a high-temperature rated version, fatigue rated, special calibrations, and it also can be pre-installed with rod end bearings. Interface also plans to introduce a submersible, IP68 rated version and a model specialized for load compensation.

The new Interface SuperSC S-Type Miniature Load Cell and review specification sheets and pricing are here.

Interface highlighted the product in the recent Superior S-Type Load Cells webinar recording.

PRESS RELEASE

ADDITIONAL RESOURCES

Superior S-Types Webinar Recap and New SuperSC

SuperSC S-Type Miniature Load Cell

Superior S-Type Load Cells Webinar

S-Type Load Cells 101

New Interface Case Study Exams Weighing and Scales

Test and measurement are used in the development and monitoring of manufactured goods across all industries. With a history of producing force measurement solutions for more than five decades, Interface has supplied a myriad of sensor devices for hundreds of thousands of different use cases and applications.

From the scales we use in packaging centers to the enormous weigh check equipment used in transportation, weighing and scale measurement solutions are instrumental in the successful design, engineering, launch, and maintenance of products and components.

Many of the earliest force sensors were designed for the purpose of weighing objects, and they continue to be a large part of test and measurement today. As products evolve and new inventions enter the market, sensors must maintain their durability, quality, and accuracy for large and miniaturized uses. Therefore, you see inventors and innovators turn to Interface today for sensors that are designed for use in robotics, IoT, and factory automation equipment used for weighing.

Historically, the only difference between now and then is that Interface has perfected accuracy in measurement across with an extensive range of force sensors models, configurations, sizes, capacities, and specification requirements that can measure weight at “jumbo” scale, as well precisely measure exceedingly small, minute forces as an embedded sensor.

Determining accurate weight is a key data point manufacturers need throughout a product lifecycle. Whether they need the information for transporting an object, lifting the object, or just creating a specification sheet, accurate data for weight measurements is fundamental for safety and function. This includes weighing single and combined parts in early design, weighing the manufactured equipment during assembly and production, using scales for weighing output with exact measure, as well as obtaining real-time weight in distribution and transport.

To accomplish this, Interface provides a host of load cells and instrumentation devices. Since our first load cells were designed in 1968, we have built millions of these products for engineers and designers that require the highest precision force sensors for accurate and reliable data collection in test and measurement (T&M). Our customers represent a wide swath of industries, products, equipment types, tools, and electronics that depend on us for proving accuracy, consistency, and reliability in performance in T&M.

In our latest case study, we outline four weigh and scale use cases that utilize Interface sensor technologies. Defined weight as a product specification requires extreme accuracy in measurement. Utilizing precision force sensing solutions and instrumentation enables product engineers and manufacturers to collect data and use it as part of the product design.

Accuracy Matters for Scales and Weighing focuses on weighing and scale applications used with heavy machinery, medical devices, operational containers, and distribution solutions. In each of these instances, utilizing weight in the design, build, and supply of these products is fundamental to each use case and the success for the product.

Weighing and Scales Case Study

 

Interface Sensor Mounting and Force Plates

Test and measurement systems are defined by the sensor, instrumentation, and mounting hardware. Mounting considerations are crucial when designing your system. Utilizing best practices in mounting is also extremely important, especially if you are utilizing multi-axis sensors. Deflections in the system can introduce errors and apparent crosstalk into the sensor measurement.

Mounting plates are used to secure sensors during use. The plates should emulate how the sensor was calibrated, so if it was calibrated on stiff plates these characteristics should be duplicated when using the sensor. Plates should be stiff in design, as a flimsy plate secured on corners can introduce errors, such as off-axis loading, due to bending.

Interface mounting plates are made from the best grade alloy and stainless-steel, machined to the tightest specifications, and are designed exclusively to maintain the performance of the sensor in your application.

Interface Mounting Plates Features and Benefits

  • Designed to work with Interface products
  • Made with the highest quality components and processes
  • Created to maintain the specification of the sensors
  • Distributes the load over the foundation of the supporting structure
  • Provides a prepared surface for the load cell
  • Eliminates the requirement for expansion assemblies in most installations
  • Available in standard and custom options

Mounting instructions are specific to each sensor model. Interface offers complete product datasheets and drawings to locate the features for mounting. We also publish mounting instructions for our torque transducer models, as highlighted in our recent Inventive Multi-Axis and Instrumentation Solutions webinar. The instructions we offer include model, material, capacity, mounting holes, threads and dowel pins and pilot specifications, for both live and dead-end use.

Plates must deflect uniformly to minimize local deformation at the mating surfaces. You may need to use a double plate mounting arrangement, also known as a sandwich mount. In this case, they need to be suitably thick. They must be flat and smooth and the same material as the sensor for thermal matching.

Interface offers top plates and bottom plates for load cells. Mounting Plates for Low Profile™ Load Cells are used in the installation of a compression load cell under a weigh bridge, tank, or other structure normally requires that mounting plates be used. The bottom plate is designed to mate with the load cell and is fabricated of mild steel. It distributes the load over the foundation or supporting structure and provides a prepared surface for the load cell.

The top plate distributes the load to the weighing structure and provides a hard surface for the load button. The top plate will move on the button due to thermal expansion, load shifting, wind loading, and other side loads. The high side load capacity of the Interface load cell eliminates the requirement for expansion assemblies in most installations. Mounting plates are suitable for compression loads only; they will not properly support a universal load cell used in tension.

Interface has recently introduced force plates. Interface Force Plates are a system of multiple multi-axis sensors mounted between two plates. They are ideal for larger capacities than single 6-Axis sensors and can react high moments. Results dependent on characteristics of the plates and other system components and for load introduction and bigger sensors, you should consider in-situ calibration.  Force plates are used for applications such as robotic arms. When secured at the base of the arm, the four sensors are providing feedback during use.

You can learn more about force plates and mounting plates for multi-axis sensors in our latest webinar. Learn more by watching the multi-axis webinar here.

Interface offers mounting plates in our accessories product line. For custom applications, such as our force plates or multi-axis mounting plates and systems, contact our Application Engineers today.

Additional Resources

3A Mounting Instructions