Posts

Back to School Force Measurement Essentials

Interface has a long history of collaborating with colleges and universities around the world. From individual engineering students testing the force of launching miniature rockets to supplying onsite test labs with load cells and equipment for R&D, we are a resource for higher education learning and experimentation.

In our view, innovation and exploration have no boundaries. What validates new ideas and manifests problem solving requires modern and reliable tools that support student’s projects and activities. Its key to any program’s success. It is also why we are proud to be known around the globe as a leader in building and designing force measurement products that facilitate these initiatives through higher learning.

It is very inspiring to see new engineering students, future metrologists, and soon-to-be graduates designing new medical devices, creating new spacecraft and interplanetary vehicles, testing materials used for miniature consumer products and of course, building plenty of new robots and AI machines.

In our view, every university or college should have Interface force measurement products on hand to support these types of educational test and measurement research projects. Here is a simplified list of basic sensor products to get started.

Force Measurement Essentials for Higher Learning

  • Precision load cells in diverse designs and capacities
  • S-type load cells (load beams)
  • Miniature load cells and load buttons
  • Multi-axis sensors
  • Calibration grade equipment
  • Instrumentation
  • Wireless sensor technologies
  • Rotary and reaction torque transducers
  • Verification load frames

Our investment in supporting educational programs runs deep into our history as a company. You will find our founder’s name on the Richard F. Caris Mirror Lab at The University of Arizona. Following in his commitment to education, the Richard F. Caris Charitable Trust II continues to support STEM programs including sponsorship of the International Science and Engineering Fair (ISEF).

We drive to ensure that students who have a passion for science, technology and engineering have access to the best force measurement sensor technologies. It is why we offer a standard discount to all students and education institutions. You can learn more about our education support here. We know that learning requires the best tools, and we want to make sure that every student has the most accurate, quality and precision load cells available today.

As with all inquisitive minds, we thought it would be interesting to share what are other university and colleges buying for their learning programs and campus labs.

Top 10 products for testing projects and campus lab studies:

  1. 1200 LowProfile Load Cells are our most popular load cell, available in standard and high-capacity features.
  2. 1010 Load Cell model is a fatigue-rated low profile load cell in our 1000 product family, offering various capacities and functions.
  3. 2420 Load Cell is one of our stainless-steel standard and high-capacity load cells in our 2400 model series.
  4. 1500 Low-Capacity Load Cell designs are common requirements for applications where low sensitivity to eccentric load is important.
  5. WMC Sealed Stainless Steel Miniature Load Cell has an environmentally protected construction that comes in a variety of model capacities and configurations. It is great for small spaces and industrial applications.
  6. 3-Axis Load Cells are extremely popular multi-axis sensors designed to provide more testing data and often paired with BSC4 instrumentation. They are ideally suited for aerospace, robotics, automotive, and medical research testing applications.
  7. 6-Axis Load Cells are growing in popularity, for cost benefit and their unique ability to simultaneously measure Fx Fy Fz Mx My Mz.
  8. SSM Miniature Load Cells are one of many popular general-purpose s-type designed load cells. You call learn more about all our s-type models here.
  9. Torque Transducers of all types are used by university programs, engineering departments and metrology labs. There are many different options including rotary and reaction torque solutions. For all options, start here to choose the right one.
  10. Load Washer Load Cells are used because of the unique through-hole designs. They come in various models and dimensions, along with capacity options.

As with any project, the questions of what you want to measure, the applications, and where you are sending the data, are all core to choosing the sensor and instrumentation that is best suited for the learning environment or program.

Speaking of where to send the data for performance monitoring and analysis, the five most favorite types of instrumentation selected by university students and engineering labs include:

  1. DMA2 Signal Conditioner
  2. 9840 4-Channel Intelligent Indicator
  3. 9825 General Purpose Indicator
  4. BX8-AS BlueDAQ Series Data Acquisition System
  5. SGA AC/DC POWERED SIGNAL CONDITIONER

If you are heading back to school and thinking that it is time to revamp the testing lab or need new force measurement equipment, be sure to reach out to our education application engineers. They have years of experience and can help you get exactly what you need for your project and programs.

Be sure to tune into our Load Cell Basics, for answer to common questions about using these highly accurate sensors for your test and measurement projects. You can find all our Interface videos on our YouTube channel here.

If you are looking to explore more technical resources, be sure to go to our online support area and subscribe to our blogs for weekly updates.

ADDITIONAL EDUCATIONAL RESOURCES

Types of Force Measurement Tests 101

Torque Transducers 101

Multi-Axis Sensors 101

S-Type Load Cells 101

Mini Load Cells 101

Force Measurement Instrumentation 101

Load Washers 101

Couplings 101

Load Shackles 101

Load Pins 101

Tension Links 101

Load Button Load Cells 101

Strain Gages 101

Load Cell 101 and What You Need to Know

Calibration Systems 101

Force Measurement Accessories 101

TEDS 101

Shunt Calibration 101

 

Specifying Accuracy Requirements When Selecting Load Cells

When selecting a load cell, it is important that your selection matches the type of application use case. If it is for general test and measurement requirements, a load cell model and capacity may differ from a load cell you design into a product or machine.

The first place to start in your transducer selection process of a load cell is to identify what you want to measure and your tolerance in accuracy.

Other questions will define the type of load cell, capacity, and measured specs. Do you want to measure tension, compression only, tension and compression, torque, or something else like pressure? What are your cycle counts for testing? What is the amount of measurement range you require? How controlled will the force be, both in orientation and magnitude consistency?

Once you identify early characteristic requirements for how you use the sensor, it is easier to begin evaluating options to optimize measurement accuracy.

Several aspects impact the accuracy of a load cell measurement, including:

  • Sensor Specifications
  • Mounting configuration
  • Calibration type
  • Instrumentation
  • Cables
  • Uncertainty of calibration

Every load cell should have a detailed specification datasheet that outlines key performance factors by model and size.

This post begins in defining specifications for accuracy as outlined for every Interface manufactured load cell. These accuracy-related specifications include:

  • Static Error Band %FS – The band of maximum deviations of the ascending and descending calibration points from a best fit line through zero output. It includes the effects of nonlinearity, hysteresis, and non-return to minimum load.
  • Nonlinearity %FS – The algebraic difference between output at a specific load and the corresponding point on the straight line drawn between minimum load and maximum load.
  • Hysteresis %FS – The algebraic difference between output at a given load descending from maximum load and output at the same load ascending from minimum load.
  • Nonrepeatability %RO – The band of maximum deviations of the ascending and descending calibration points from a best fit line through zero output. It includes the effects of nonlinearity, hysteresis, and non-return to minimum load.
  • Creep % – The change in load cell signal occurring with time while under load and with all environmental conditions and other variables remaining constant. Expressed as % applied load over specific time interval.
  • Eccentric Load Sensitivity: ECCENTRIC LOAD – Any load applied parallel to but not concentric with the primary axis. Results in moment load. SIDE LOAD – Any load at the point of axial load application at 90° to the primary axis.

Interface load cells are designed for precision, quality, and accuracy. Though the ranges may differ in specifications slightly, most of the performance data will far exceed industry standards. As we always say, Interface is the standard for load cell accuracy.

We will be outlining additional impacts on accuracy in upcoming posts. If you have questions on any product and specifications, as to whether it is the right load cell for your use case, contact us for help.

Additional Resources

Contributing Factors To Load Cell Accuracy

Application Notes

Accuracy Matters for Weighing and Scales

Interface Ensures Premium Accuracy and Reliability for Medical Applications

Interface Accelerates Accuracy in Test and Measurement

Interface Presents Load Cell Basics

I’ve Got a Load Cell Now What? Episodes 1 and 2

I’ve Got a Load Cell Now What? Episodes 3 and 4

I’ve Got a Load Cell – Now What? Episodes 3 and 4

Continuing our review of the popular webinar series, I’ve Got a Load Cell – Now What?, we are detailing the third and fourth episodes. The focus of these two installments is documentation that you should expect with every load cell and the fundamentals of load cell output.

Digging into documentation is an important subject for anyone that is buying or using load cells for test and measurement. It is also a differentiator in the quality and type of manufacturer that makes your device. The details provided in load cell documentation validates the characteristics and performance, as well as experience and craftmanship used in the engineering and construction of your load cell.

When quality and accuracy matters, documentation and certification are critical verification evidence.

Load Cell Documentation: Datasheets and Calibration Certificates

Interface provides detailed datasheets for every load cell model number. On the top of the datasheet, the Interface model number precedes the description of the load cell’s primary characteristics, such as 1200 Standard Load Cell. The Interface Calibration Certification accompanies every sensor device we manufacturer and ship from our U.S. headquarters, confirming the final condition prior to release. Interface calibrates every load cell we make before it leaves our facilities as part of our performance guarantee.

INTERFACE DATASHEET FUNDAMENTALS

  • Features and Benefits
  • Standard Configuration and Drawings
  • Dimensions
  • Specification Parameters Based on Model and Capacity
  • Detailed Measurement and Performance Data for Accuracy, Temperature, Electrical and Mechanical
  • Options
  • Connection Options
  • Accessories

Special note for datasheet reviews, the models that use the same form factor are often on the same datasheet with varying capacity measuring ranges in U.S. (lbf) and Metric (kN) information.  All Interface datasheets are available for review and download for every product we offer, including load cells, torque transducers, multi-axis sensors, mini load cells, load pins and load shackles, instrumentation and accessories.

INTERFACE CALIBRATION CERTIFICATES DETAILSIQ

  • Model Number
  • Serial Number
  • Bridge and Capacity
  • Procedures
  • Input and Output Resistance
  • Zero Balance
  • Test Conditions: Temperature, Humidity and Excitation
  • Traceability
  • Shunt Calibration
  • Performance Test Data of Test Load Applied and Recorded Readings
  • Authorized Approval

The performance information detailed on the certificate is important for how it was calibrated, how it performed at release, system health checks and troubleshooting. Watch the episode #3 of I’ve Got a Load Cell – Now What? for additional information about datasheets and cal certs.

Fundamentals of Load Cell Output

Load cells are used in one of two ways, either universal (bipolar) or single mode (unipolar). Bipolar is for measuring tension and compression. Unipolar is for measuring either tension or compression. This use type will dictate what output you will get from the load cell. Most Interface load cells are a tension upscale device, which means you will get a positive output when it is placed in tension.

Standard load cells are usually unamplified mV/V ratio metric output. Interface does offer amplification signals for our load cells, which is a common request when pairing with a data acquisition system. In episode #4 of I’ve Got A Load Cell – Now What?, Elliot provides an example of mV/V ratio metric when using a 5000 lbf LowProfile Load Cell with our 9840 Instrumentation.

For questions about datasheets, calibration certifications or performance and capacities, please contact our application engineers.

ADDITIONAL RESOURCES

Interface 1200 Precision LowProfile Load Cell Series Product Highlight

Load Cell Basics Technical Q&A Part One

Load Cell Basics Technical Q&A Part Two

Understanding Load Cell Temperature Compensation

Load Cell Basics Sensor Specifications

 

I’ve Got a Load Cell – Now What? Episodes 1 and 2

Interface has produced more than 100 videos, all available on our Interface YouTube channel.  We provide product videos, industry and application use cases, training, software, and set-up instructions, ForceLeaders webinars, and video discussions with our force measurement solutions experts.

One of our most popular videos is our webinar that answers the question, I’ve Got a Load Cell – Now What? In this online seminar, we discuss some of the basics about load cells, as well as offer tips for checking the health of your load cell, installation tips, usage best practices and monitoring performance.  The series concludes with an in-depth Q&A session. As with all good material, we offer a modern remake to this valuable online resource with a refreshed 7-part series that addresses important load cell topics with visual demonstrations.

In the updated series, I’ve Got a Load Cell – Now What, Interface’s Brian Peters and Elliot Speidell cover the following load cell basic topics:

  • Episode #1 Visual Inspection of Your Load Cell
  • Episode #2 How to Read the Load Cell Label
  • Episode #3 Load Cell Documentation: Datasheets and Calibration Certificates
  • Episode #4 Fundamentals of Load Cells
  • Episode #5 Load Cell Instrumentation Tips and Setup
  • Episode #6 Checking Load Cell Health and Usage Best Practices for LowProfiles, SM S-Type Load Cells and Miniature WMC Load Cells
  • Episode #7 Q&A with Brian and Elliot address incoming questions on what to do

Over the next several weeks, we’ll be highlighting some of the material that is covered in these short clips.  Today’s focus is about visual inspection and how to read a load cell label.

Visual Inspection of Your Load Cell

Visual inspection is critical for all load cells. The good news is that Interface provides quality-controlled inspection of all load cells before they leave our factory. If you are about to utilize a load cell that you have had on the shelf or has not been used for a while, visual inspection is an important first step. In this video, Brian highlights what to look for during your inspection:

  • Thread damage
  • Condition of the exterior load cell
  • Noticeable wear from exposure
  • Check for any rust
  • Inspect connectors and pins

Watch I’ve Got a Load Cell – Now What? Begin with Visual Inspection


Upon your inspection, if you would like Interface to provide a detailed inspection and calibration service before you utilize an existing sensor, contact our services team.

How to Read Interface Load Cell Labels

In this short episode, we highlight how to read an Interface load cell label. Every device we manufacturer has essential information about the sensor detailed on the label. You will find the model number, capacity, serial number and often you find options and option codes that detail the exact sensor features. Labels can also provide output data from time of calibration. To get a complete run-down on what is on Interface labels, watch I’ve Got a Load Cell – Now What? Reading Interface Sensor Labels.

Looking for more videos or resources, be sure to go to Interface’s online support resources. You will find diagrams, installation manuals, technical and troubleshooting details, educational videos and more.

ADDITIONAL RESOURCES
Interface Presents Load Cell Basics
Load Cell Basics Technical Q&A Part One
Load Cell Basics Technical Q&A Part Two
Get an Inside Look at Interface’s Famously Blue Load Cells

Load Cell Basics Technical Q&A Part Two

Interface hosted a series of ForceLeaders webinars this past year covering topics that included multi-axis sensors, instrumentation, torque transducers, custom solutions and more.  We plan to continue this popular series into the new year, based on the feedback we have received about topics of interest and support requirements.

One of the features that we like to include in our events is answering a list of top questions, as well as questions we get from the participants.  In our event, Load Cell Basics, we covered a lot of interesting inquiries as well as the top questions we get about our precision load cell products.

We highlighted the first group of questions in our recent post, Load Cell Basics Technical Q&A Part One. And there is more, below highlights additional questions we addressed during the live event.   A recap of the webinar is also online, reviewing key topics we discussed during the one-hour learning event with force measurement experts Keith Skidmore and Brian Peters.

Is There a Better Way to Tare a Load Cell?

Tare is defined as a deduction from the gross weight of a substance and its container made in allowance for the weight of the container, which is sometimes also called the vessel.  For purposes of this reference, we are noting the container is the actual body of the load cell.

Whether you tare a load cell by electronics or mechanical, preload taring of the system is typically done through instrumentation.  You want to ensure that whatever mechanical tare load you have on the sensor isn’t going to impede on your usable capacity range. As far as the load cell is concerned, there really is no need to accommodate any sort of mechanical tare. These are linear devices if you stay within the range.  On the mechanical preload side, it is important how you preload some of attachments especially for the LowProfile load cells. We recommend to preload if you can. It is what we do for best results so that the load path doesn’t change through the threads, which can affect very small amounts of linearity hysteresis

Does Frequency Measurement Limit Impact How Fast the Load Cell Responds?

This is a function of the mechanical flexure design for that sensor. It is important to note that each sensor is a mechanical spring. Depending on the stiffness or the deflection characteristics of a load cell, you will have different natural frequency characteristics. This information is typically documented on our product data sheets by model and configuration.  Generally, the stiffer the sensor the better it’s going to perform in cyclic applications.

Adding to this, Keith notes that load cells are great at hundreds of hertz. If you are asking about tens of thousands of hertz, they are not. There is a spot where very high frequencies of these standard load cells aren’t as effective. Most of our typical testing customers who are applying cyclical loads to a test specimen will confirm that low profile or strain gage-based load cells are great for their frequency requirements.  Work with our application engineers if you have a frequency requirement that is extremely high.

Tare and Working Up an Error Budget

This question comes in from an engineer that is working up a calculated error budget that has a mechanical tare load on that system already. Before you start your test, if you tare it how does that factor into your initial preload in the system? Will it impact your error budget? The answer is that yes, it can have some impact. You can zero out your temperature effect on zero; however, if you have a lot of preloads, you can’t. You must go back to zero to zero it out. This can impact your error budget. Basically, if you zero out, it eliminates the temperature effect. You cannot make the same assumption in your budget if you have considerable preloads.

Does Interface Recommend Particular Amplifier Instrumentation Products?

We do have a wide variety of amplifier solutions. They range from small embeddable amplifiers up to inline options that are DIN rail mounted.  We also have various digital output instrumentation productions available for ethernet, ether cat, Modbus, and USB.

It is important in your consideration to understand that there are errors that can impact instrumentation performance. Selecting the right instrumentation should be a function of the application and what are the changes in testing environment. Resolution is critical in your decision if you are doing a digital type conversion. There’s a lot of parameters to consider. Our recommendation would be to look at what is available from Interface and contact our application engineers to review your specific requirements.

What is the Most Frequent Problem When Installing a Load Cell?

One of the issues are asked about is usually related to the mechanical installation. It’s not as simple as just a nut, bolt, and threaded connection. There is a lot more to it and it’s often and discounted how important it is to ensure things are aligned properly so that you don’t have any parallel load paths. All the load must go through the load cell to make a proper measurement. For example, if you have a mounting plate and the plates are riding on the heads of the screws of the load cell, it is going to shunt the load. Mechanical installation is often missed in the test set-up design. It is often not given enough weight in importance of your test.

We also often see that users have either inadequate torque in an assembly or perhaps too much torque for the lower capacity load cells.  It’s advised to be careful of the installation torque. We recommend that if you aren’t familiar with mechanical installation, ask us for our detailed installation instructions. We provide guidance in terms of recommended torque values and proper methods of where to attach the sensor. It’s easy to over torque a load cell, as they are designed to see axial loads. We have seen users people crank on things and transmitting too much torsional load through creating performance issues that might not show up right away.

Do Cables and Amplifiers Affect Results of Load Cell Calibration?

The answer is absolutely it can impact your results. It doesn’t mean it will, but it can affect performance and measurement accuracy. For example, if you change the cable length or have an instrument that is a different temperature with cable running out of an oven into cooler temperature room, these things can influence the measurement. Even if the load cell is at a constant temperature but the cable is changing temperature, it will cause a signal to change. That’s not something you want in your measurement.

You may mitigate temperature by shielding the cable or you could have a fatter cable which could have less of an effect. Some of these things can be calibrated out. If you add a long cable and then apply loads to your load cell, it considers that there is a longer cable, and you can completely calibrate out the effect of the cable length on the signal dropping due to the resistance. Some instruments use sense to measure the voltage at the load cell. In that case, it is insensitive to any cable effect. You can change cable lengths and it doesn’t make any difference.

Is a 10kn (2,250) lb. Force Application Too Much for a 2,000 lb. Load Cell?

Yes, it’s above the calibrated range and thus you can’t guarantee performance. Load cells will typically stay linear over capacity but there’s no guarantee on the accuracy. This is especially true if you overload with frequency. You’re starting to exercise the load cell in areas where we’d recommend you stay away from to keep the results accurate. Oftentimes, you’re better off going with a larger sensor. Pay attention to the actual output. That’s one advantage of most of our products, especially in the LowProfile range.

Is There Maximum Sampling Frequency for Strain Gage Load Cells?

It is going to depend somewhat on the model of the load cell. Hundreds of hundreds of hertz are certainly adequate. If you start getting close to the natural frequency posted on our product data sheet, we recommend you review the application with our application engineers.

We know engineers who use load cells for safety impact testing. For example, you might need to sample 10 kilohertz. The load cell doesn’t make a difference for how fast you sample the signal, but those cells can only respond in typically a millisecond response time. There are no moving parts or active circuitry; however, typically testing is going to test something until it fails. It is suggested to sample it at a couple thousand hertz to make sure you capture that exact point where the system fails or spikes. If you do have some concern over creep error that’s introduced, record what that non-zero value is as soon as you release that load. That is an accurate measurement of how much creep error was introduced being symmetric.

We exercise our load cells before calibration. It’s relatively quick and typically done in hydraulic frames which are automated to test where they cycle the load in short cycle intervals, like 30 seconds. It’s really the magnitude of the exercising, not how long it lasts. If load is being tested at 120% for an hour, that’s no better than 10 seconds, other than it introduced a lot of creep for an hour. Exercising means you must wait longer for the creep to return, so if the load is a fast cycle, you can check the zero quickly.

If you have additional questions for our experts, we recommend that you visit our technical support resources. We have commonly asked questions, installation guides and manuals and more.  We are also here to support you. Contact our technical support team if you need assistance.

Additional Resources

 

Load Cell Field Guide

Load Cell Basics Sensor Specifications

Load Cell Basics Technical Q&A Part One

Interface 1200 Precision LowProfile Load Cell Series Product Highlight

Load Cell Basics Technical Q&A Part One

Interface recently hosted a webinar, Load Cell Basics, where our experts answered a series of questions from event attendees.  In the interest of sharing what we know and addressing some frequently asked inquiries, we are offering a new series in our Interface IQ blog entitled Interface Technical Q&A.  At the conclusion of our presentation, we had several questions related to the basics of load cells.  We will be answering them in two posts.  Here is the first list.

Why Does Interface Use Proprietary Strain Gages?

Strain gages are a key component to any load cell. Making our own strain gages gives Interface full control over our design and production, ensuring we can meet our specifications with certainty in quality, accuracy, and dependability. Interface strain gages are precision matched to the load cell material to counteract the temperature effect on output. We have different load cell materials and that means we use different strain gages for each type.

Our strain gages are simple in design, and we don’t use compensation resistors making them a more reliable circuit.  They don’t have to go through resistors; thus, the accuracy and precision measurement is more reliable and capable of faster thermal and higher outputs.

What Type of Temperature Testing Do You Do on Interface Load Cells?

Interface performs both hot and cold thermal compensation from 15˚ – 115˚F, including adjust and verify cycle. Most other manufacturers of load cells provide only the hot side (60˚ – 160˚F) testing. The slope of the curve is much flatter near room temperature and identical at both ends of the slope.  The result is minimal variation across the entire thermal range.  We also offer custom calibrated ranges by request. Read more about temperature compensation here.

Is Temperature Compensation Achieved Using Dummy Gages?

The simple answer is no. Interface does temperature compensation of output by matching the strain gage to the material temperature compensation of zero. This is achieved by using a wire in the circuit that opposite resistance changes to the circuit.

Do You Have Software to Read TEDS Available to Use with Interface Load Cells?

Interface does offer instruments that can use the TEDS data and instruments that can write the TEDS data to the chip. Interface has software that hooks up or attaches to the TEDS chip reader writer so that when we program a chip during manufacturing of load cells in our factory, we have software we use to complete this function.  We also do offer this software for commercial use.

Is it Acceptable to Regularly Use a Load Cell Above Its Specified Capacity?

The short answer is no.  You want to reserve the “above capacity” for accidents. We are aware that people will do this in practice and the load cell will typically work reasonably well above capacity.  The problem is you want to handle that the answer is no you’re consuming your safety factor and you don’t have any extra head room for something that goes wrong.  Also, using the load cell above capacity doesn’t exactly follow the same calibration curve.  As an example, if you are using a 10k load cell with a 10k calibration and you are running tests at 12k, you may have higher errors.  You can ask us to calibrate the load cell to the 12,000 lbs.; however, you must note this can reduce the safety factor and that is why we do not recommend it.

Does Variable Altitudes Impact Performance?

Interface does have the ability to handle different pressure scenarios. Interface sends our products out ventured, if necessary, to be able to tolerate pressure change without causing any zero shift. If you do have applications where you will have either high pressure requirements or pressure change throughout the test, we certainly have solutions that can accommodate that requirement.  Work with your application engineer to ensure you have the exact testing requirements detailed when you are ready to buy your next load cell.

Can Cables Influence Temperature Errors?

If you’re adding cable to the load cell and for example, you have a 10-foot cable you want to add 100 feet more of cable, that adds resistance. The lower gauged cable, the better. A 22-gauged cable is better than a 28-gauged cable, so use a thicker cable and it will have less resistance impact on the measurement.

Is Creep Due to Material or Strain Gages?

Essentially all the elements in the sensor and everything mechanical will respond to creep.  The goal is to match the creep behavior of the bridge to the creep behavior of the load cell material or the flexure. Yes, creep affects both, but you want the result to trend in the same direction so that you get minimal error or change in the signal because of creep.

Are All Load Cells Intrinsically Safe?

They are intrinsically safe devices; however, anytime there is a hazardous environment or intrinsic safety requirements, please contact an application engineer to review the sensor use case and to factor in all aspects of your testing and use environment.  The load cells are typically working off 5-volt 10-volt and you need to look at all aspects of the location. For more information about our specialized line visit load cells for harsh environments.

This is the first in a new series of Interface Technical Q&A.  Do you have a question for our technical experts?  Send an email to digmktg@interfaceforce.com and we will add it to a future post.  If you have an immediate question, be sure to contact us today and let us know how we can support you.  You can also reference our technical support resources online for help.

Contributors:  Keith Skidmore and Brian Peters

Additional Resources

Load Cell Basics Webinar Recap

Interface Load Cell Field Guide

Load Cell Basics Sensor Specifications

When selecting a load cell, it’s critical to understand the major factors impacting sensor accuracy. These factors are determined by the materials and components used in the construction of the load cell, the calibration, instrumentation, the accessories such as cables, and mounting installation. Each must be considered in the specific use cases for the load cells.

During our virtual event, Load Cell Basics, applications expert Keith Skidmore detailed everything you need to know about load cells and how to choose the right load cell.  First, Keith highlighted four vital application considerations:

Mechanical – Dimensions and Mounting

Electrical – Output and Excitation

Environmental – Temperature and Moisture

Performance – Accuracy and Thermals

Taking a deeper dive into performance, an important consideration when selecting your load cell are the sensor specifications and how they impact accuracy. The sensor specifications relate to the max error of various parameters. The specifications are always included in product spec sheets and are expressed using the following values – %FS, %RO, %, %/°F, time-related. Specifications listed relate to the max error for accuracy and temperature.

Interface provides all sensor specification data for our load cells in the product datasheets found on each product page for easy download.

The information we provide for every load cell typically includes:

Accuracy:

  • Static Error Band
  • Non-linearity
  • Hysteresis
  • Non-repeatability
  • Creep
  • Side Load Sensitivity
  • Eccentric Load Sensitivity

Temperature:

  • Compensated Range
  • Operating Range
  • Effect on Zero
  • Effect on Span

Further definitions can be found in our online technical glossary.  Here are a few that we highlighted in the Load Cell Basics webinar.

Static Error Band: A band encompassing all points on the ascending and descending curves centered on the best fit straight line. It is expressed in units of %FS.

SEB Output: The output at capacity based on the best fit straight line.

Non-repeatability: The maximum difference between output readings for repeated loadings under IDENTICAL LOADING AND ENVIRONMENTAL CONDITIONS. In practice, there are many factors that affect repeatability that ARE NOT included in the non-repeatability specification. It is normally expressed in units of %RO.

Non-linearity: The difference in the output from a straight line. It is normally expressed in units of %FS.

Hysteresis: The difference in the ascending versus descending curves. This is normally expressed in units of %F.

Understanding these factors and the maximum error for your specific project is critical to selecting a load cell and getting the best possible data out of it.

To learn more about sensor specifications for load cells, review the product specs on each datasheet or in our product catalogs. For additional help, call to speak with our application engineers at 888-557-2533.

To view additional online events, please go to our events page.

 

How to Choose the Right Load Cell

Load cells are used to test and confirm the design of hardware, components, and fixtures used across industries and by consumers. From the structural integrity of an airplane to the sensitivity of a smartphone touchscreen, there’s a load cell available to measure force. In fact, here at Interface we have over tens of thousands of products used in force measurement, for all types of different applications.

How do engineers and product designers go about choosing the right load cell for a specific application or testing project?

Have no fear, Interface has put together a short guide on choosing the load cell that is right for you. This blog will cover the basic questions to answer when selecting a product, as well the most important factors affecting load cell choice.  Be sure to watch the online video, Load Cell Basics, that highlights key factors of consideration when choosing the right load cell for additional insights.

The basic questions you need to consider when selecting a load cell include:

  • What are the expected loads? What is the minimum and maximum load you’ll be measuring?
  • Is there any potential for higher peak loads than what you intend to measure? What are these expected peak forces?
  • Is it tension, compression, or both?
  • Will there be any off-axis loads? If so, what is their geometry? Do you want to measure them too?
  • Will it be a static, dynamic or fatigue measurement?
  • What is the environment in which you’ll be conducting your test? Will the load cell need to be sealed?
  • How accurate do your measurements need to be? Do they need to be at the highest accuracy of ±0.02-0.05% or within ±0.5-1%?
  • What additional features, accessories and instrumentation does your application require to complete a test?
  • Do you need standard electrical connectors or customized options? What about additional bridges or amplifiers?
  • How are you planning to collect and analyze the data output from the load cell?

Next, these are the most important factors affecting accuracy, which will have a heavy influence over the load cell you choose. It’s important to understand how your application and the load cell will be affected by each of the factors, which include:

  • Mechanical – Dimensions and Mounting
  • Electrical – Output and Excitation
  • Environmental – Temperature and Moisture

One of the most important factors in choosing the right load cell is understanding how it will be mounted for testing or as a component within a design. There are a wide variety of mounting types including threaded connections, inline, through hole or even adhesive. Understanding the mounting type that suits your application is critical to getting the correct data because a poorly mounted load cell will distort the results and can damage the load cell.

The mounting process also requires you to understand which direction the load is coming from, in addition to any extraneous loads that may be present. The load cell mating surface is also an important factor. For example, when using our LowProfile® load cells without a pre-installed base, the best practice is to ensure that the mating surface is clean and flat to within a 0.0002-inch total indicator reading and is of suitable material, thickness, and hardness (Rc 30 or higher). Also make sure that bolts are torqued to the recommended level.

If you’re conducting a fatigue measurement, it’s also important to address the frequency and magnitude of load cycles with your load cell provider. Factors to address include single mode versus reverse cycles, deflection versus output resolution, and material types. Interface offers a wide variety of fatigue-rated load cells that are perfect for these types of applications.

Another consideration in choosing the right load cell is the electrical signal. Load cells work by converting force into an electrical signal. Therefore, it’s important to understand the electrical output type necessary for your application, which could include millivolt, voltage, current or digital output. You can find the excitation voltage data on our website for each of our load cells. Additional considerations include noise immunity, cable length and proper grounding.

The environment is also a critical factor in ensuring accurate performance of your load cell. Interface provides load cells in a variety of material types including aluminum, steel, and stainless steel. Each material has a variety of properties that make them more suitable for different environments. For a more in-depth perspective on the different strengths and weaknesses of materials, please read our blog titled, Considerations for Steel, Stainless Steel and Aluminum Load Cells. For applications where load cells need to be submerged in liquid or enter an explosive environment, we also have a variety of harsh environment and IP rated load cells, in addition to load cells suitable for high humidity or splash resistance. Learn more about our intrinsically safe load cells here.

Learn more about choosing the right load cell in these online resources:

WATCH: Load Cell Basics with Keith Skidmore

WATCH: How to Choose a Load Cell with Design Engineer Carlos Salamanca

READ: Load Cell Field Guide

VISIT: Interface Technical Library

To learn more about choosing the right load cell for any application, connect with our applications engineers about the force measurement needs for your next project at 480-948-5555.

Load Cell Basics Webinar Recap

Interface applications and load cell expert Keith Skidmore was the featured presenter at the latest ForceLeaders Forum hosted event, Load Cell Basics. In his comprehensive presentation, he highlights key subjects including fundamentals of load cell design, sensor specifications, use cases, troubleshooting and valuable performance related topics.

The entire event is now available on the Interface YouTube channel.

In this 60-minute virtual event, Keith highlights commonly asked questions from both new load cell users as well as for advanced engineers and force measurement pros.

What will you learn watching the online Load Cells Basics event?

  • Load cell designs and how they work
  • Capacities, models and how to choose the right load cell
  • Factors that can impact sensor accuracy
  • Performance, moment compensation, creep, and eccentric load sensitivity
  • Calibration and troubleshooting
  • Use Cases and FAQs

The team concluded the event by answering a series of questions from the participants. They addressed advanced technical and set-up questions, as well as frequently asked inquiries about common troubleshooting issues.

Here is a sample of questions that you can find answered in the Load Cell Basics recorded event:

  • Is the temperature compensation achieved using dummy gauges?
  • Does Interface offer or have their own software to read the TEDs?
  • Can we assume that all load cells are intrinsically safe for hazardous locations?
  • What is the IP protection rating for the electrical connection?
  • What is better way to tare load cells, by electronics or mechanical preload?
  • Which is the frequency measurement limit and how fast does the load cell respond?
  • What are recommended amplifier instrumentation brands?
  • What is the most frequent problem when installing a load cell?
  • Does the cables and amplifiers affect the results of the load cell calibration?
  • For an application to 10 kN (2250 lbf), is it too much to use a 2000 lb load cell or should we use the next higher capacity?
  • What is the maximum sampling frequency for strain gage load cells?

WATCH THE EVENT AND Q&A HERE: https://youtu.be/_oHvfAzHMig

If you have additional technical questions or would like to talk about your specific application requirements, contact our Interface Application Engineers here. 

Additional resources for troubleshooting can be found here.

Our Interface Load Cell Field Guide is also helpful for troubleshooting and advanced technical support references.  You can order here.