Posts

Load Cell Sensitivity 101

Load cell sensitivity refers to the relationship between the input force applied to a load cell and the output signal it generates. It is a measure of the load cell’s responsiveness to changes in the applied force and is expressed in units of mV/V (millivolts per volt) or micro-volts per volt.

When determining the accuracy of a load cell, load cell sensitivity is an important parameter. A higher sensitivity means that even small changes in the applied force will result in a larger change in the output signal, making the load cell more sensitive and accurate.

It is critical to understand that load cell sensitivity and accuracy are closely related. A high sensitivity load cell will generate a larger output signal for the same applied force, which can increase the accuracy of the measurement. In general, the accuracy of a load cell is a combination of its sensitivity and the quality of its design and construction. Interface specializes in precision accuracy, which is important when considering the use case for your load cell.  As defined by the specifications, a high-quality load cell with appropriate sensitivity will provide accurate and consistent measurements, while a load cell with low sensitivity or poor quality may provide less accurate measurements.

Most load cells are designed to measure force in one certain direction, which is determined by the way the load cell is mounted. Inappropriate loading will cause side and eccentric load, which risks reducing the life of load cells and distorting measurement results.

Eccentric load sensitivity is measured by eccentric load, which is any load applied parallel to but not concentric with the primary axis. Side load is any load at the point of axial load application at 90 degrees to the primary axis.

To achieve a desired level of accuracy, it is important to choose a load cell with the appropriate sensitivity for the application. Load cell sensitivity can be affected by factors such as temperature, temperature gradients, and environmental conditions, so it is important to take these factors into account when selecting a load cell.

What conditions impact load cell sensitivity? Load cell sensitivity can be impacted by several factors, including:

  • Temperature: Changes in temperature can cause thermal expansion or contraction of the load cell material, affecting the output signal and reducing accuracy.
  • Temperature gradients: The presence of temperature gradients within the load cell can cause differential expansion or contraction of different parts of the load cell, further affecting the output signal and reducing accuracy.
  • Environmental conditions: Exposure to harsh environments, such as moisture, vibration, and shock, can cause damage or degradation to the load cell, reducing its sensitivity and accuracy.
  • Load cell orientation: The orientation of the load cell can impact the output signal, especially in applications where the load is applied at an angle.
  • Mechanical stresses: The presence of mechanical stresses, such as bending or twisting, can affect the output signal and reduce accuracy.
  • Aging: Over time, the load cell may experience degradation or wear and tear, reducing its sensitivity and accuracy. This is where regular calibration plays a role in the lifetime of your load cell.

It is important to consider these factors when selecting a load cell and to properly maintain and calibrate the load cell to ensure optimal sensitivity and accuracy over time.

Calibration is a process that involves adjusting the output signal of a load cell to ensure that it accurately reflects the applied force. Calibration improves load cell sensitivity by correcting for any errors or inaccuracies in the output signal, ensuring that the load cell provides accurate and consistent readings over time.

During calibration, a series of known loads are applied to the load cell, and the corresponding output signals are measured. These measurements are used to create a calibration curve that represents the relationship between the applied force and the output signal.

Calibration helps to correct for various factors that can affect load cell sensitivity, such as temperature, environmental conditions, and mechanical stresses. By adjusting the output signal to accurately reflect the applied force, calibration helps to ensure that the load cell provides accurate and consistent readings, even in challenging conditions. Interface recommends calibration of every load cell at least once a year for regular sensitivity maintenance.

Interface engineers design high accuracy, quality load cells with appropriate sensitivity that provides accurate and consistent measurements. It is important to consider both sensitivity and accuracy when selecting a load cell for an application and to regularly calibrate the load cell to ensure that it continues to provide accurate and reliable measurements over time.

Strain Gage Design Under Eccentric Load WRSGC Presentation

By Ashlesa Mohapatra, product design engineer, Interface

In the global marketplace, Interface is well known as providing the force measurement industry’s most reliable and accurate products. One of the key reasons that Interface consistently earns this recognition is because we manufacture our own strain gages. Products engineered and manufactured at Interface use our proprietary strain gages, and each designed for the specific transducer model based on the application type and environment for use.

As an example of our dedication to quality and excellence in performance as it pertains to strain gages, I recently shared a technical presentation on the negative effects of eccentric load and how strain gage design can reduce these challenges.

Below is a brief recap of this presentation made to the attendees of the Western Regional Strain Gage Committee meeting that took place in Tempe, Arizona in October 2022. The summary explains why strain gage design can make all the difference in quality versus poor performance with load cells.

Interface redesigned the strain gages on one of our mini load cells, the LBSU Miniature Load Cell Load Button, also known as our ConvexBT – The Most Innovative Load Button Load Cell. Our goal in the redesign was to create more controlled and repeatable loading, in turn creating a more predictable output. Our research focused on strain gage designs for load cells where mechanical moment compensation is not feasible.

The main challenge with this initiative was overcoming the errors associated with eccentric loading by making the installation process smoother through a redesign.  This is difficult because strain gages are very small in size and therefore more difficult to work with, in addition they are extremely sensitive to the environment with factors like temperature, humidity, cleanliness and electric interference all potentially effecting performance.

Before diving into the redesign, I would like to touch on eccentric loading and the errors it will cause, as well as the varied factors in strain gage manufacturing that can lead to errors causing eccentric load. There are two types of eccentricity: loading and mounting. Eccentric load results from improper loading or mounting of the strain gage, which leads to off-axis loads and bending. This causes several problems including distorted measurement results, decreased load cell accuracy, and diminishing life of the load cell.

When a strain gage is mounted on the load cell incorrectly or gages are badly bonded, it will almost always be an error source and contribute to mounting errors. Also, when strain gages are not bonded to the load cell at appropriate temperature and humidity, it leads to bubbles under the gage. Chemical composition of the strain gage is critical, such as the adhesive between the foil and backing, based on the application in which load cell will be used in a lab, machine, or testing program.

With these factors in mind, we set out on a redesign continuous improvement project. The previous design of this products strain gages was rectangular in shape. So, when the load cell was loaded, eccentrically or not, the strain field would not pass through because of shape. Therefore, we began to look at other shapes for our strain gage design, ultimately landing on a circular “diaphragm” style strain gage that allow strain fields to pass through.

One of the features of this newly designed strain gage is the proprietary adhesive foil we used to adhere the foil to the backing. This adhesive provided a great deal of benefit including a lower modulus of elasticity making it resilient to adhesive failure, and the elasticity also allows for better flow.

Another feature is the full bridge gage pattern we used that provides three key advantages. This includes fewer solder joints and reduced risk for electrical shorts due to simplified wiring, reduced symmetry error, and consistent thermal performance.

One process improvement we wanted to point out was that in our calibration process we only used 5V excitation voltage. Most manufacturers use 10V to calibrate their load cells. Due to lack of thermal mass in the thin diaphragm design of our strain gage, the zero will shift due to high voltage and low poor heat dissipation with 10V. We use a 5V excitation voltage to calibrate these miniature load cells instead of the alternative to prevent overheating of the cell.

To further improve the design, we enhanced the inspection process. Our diaphragm gages are quality inspected for accurate mounting with visual and electrical testing. Visual testing includes checking for air bubbles under the gage, badly bonded edges, unreliable solder connections and flux residues. Electrical tests include checking for electrical continuity and insulation resistance.

We then moved our attention to the circuit board. Some manufacturers use a circuit board in the cable due to the limited space within the cell to improve zero balance zero balance and to better compensate for temperature. However, bending or moving this cable would put pressure on the board and shift the zero. Therefore, we elected to install an abradable compensation resistors inside the flexure instead of the cable. This keeps the compensation resistor close to the gages and is intimately bonded to the body of the sensor to improve the reaction time of the cell to temperature.

To evaluate and confirm that our design was superior, we assessed three different strain gage styles: the rectangular gages (discreet gages), patch gages, and our diaphragm gage. Each of the gage styles were placed on three different load cells and loaded at one degree centricity. This test was run at 45 degree increments eight times. The results showed diaphragm style provided more reproducible result under eccentric load compared to other gages.

This was an interesting undertaking that taught the project team a lot about strain gage design and eccentric load. What I took away from this experience, other than a superior design for our ConvexBT Load Button Load Cells, is that any commercially successful product has a strong process behind it. You also need to have a clearly defined process that includes a continuous improvement plan. Interface Minis are a popular product line that has been around for many years. As soon as a product like this hits a point of stagnation, it will lose its hold on the market. I am proud of our team’s ability to avoid stagnation by taking critical steps to improving the Mini product line, maintaining our reputation for having the best quality, accurate and reliable products no matter the capacity available for precision force measurement.

Western Regional Strain Gage Committee (WRSGC), a technical division of the national Society for Experimental Mechanics (SEM), was established to promote a free interchange of information about strain measurement techniques using strain gages.

Interface is a proud member and sponsor of WRSGC. Our engineers participate in the technical conferences, in both presentation and attendance. Interface’s Product Design Engineer Ashlesa Mohapatra presented at the event held in Arizona, October 17-19, 2022.

Specifying Accuracy Requirements When Selecting Load Cells

When selecting a load cell, it is important that your selection matches the type of application use case. If it is for general test and measurement requirements, a load cell model and capacity may differ from a load cell you design into a product or machine.

The first place to start in your transducer selection process of a load cell is to identify what you want to measure and your tolerance in accuracy.

Other questions will define the type of load cell, capacity, and measured specs. Do you want to measure tension, compression only, tension and compression, torque, or something else like pressure? What are your cycle counts for testing? What is the amount of measurement range you require? How controlled will the force be, both in orientation and magnitude consistency?

Once you identify early characteristic requirements for how you use the sensor, it is easier to begin evaluating options to optimize measurement accuracy.

Several aspects impact the accuracy of a load cell measurement, including:

  • Sensor Specifications
  • Mounting configuration
  • Calibration type
  • Instrumentation
  • Cables
  • Uncertainty of calibration

Every load cell should have a detailed specification datasheet that outlines key performance factors by model and size.

This post begins in defining specifications for accuracy as outlined for every Interface manufactured load cell. These accuracy-related specifications include:

  • Static Error Band %FS – The band of maximum deviations of the ascending and descending calibration points from a best fit line through zero output. It includes the effects of nonlinearity, hysteresis, and non-return to minimum load.
  • Nonlinearity %FS – The algebraic difference between output at a specific load and the corresponding point on the straight line drawn between minimum load and maximum load.
  • Hysteresis %FS – The algebraic difference between output at a given load descending from maximum load and output at the same load ascending from minimum load.
  • Nonrepeatability %RO – The band of maximum deviations of the ascending and descending calibration points from a best fit line through zero output. It includes the effects of nonlinearity, hysteresis, and non-return to minimum load.
  • Creep % – The change in load cell signal occurring with time while under load and with all environmental conditions and other variables remaining constant. Expressed as % applied load over specific time interval.
  • Eccentric Load Sensitivity: ECCENTRIC LOAD – Any load applied parallel to but not concentric with the primary axis. Results in moment load. SIDE LOAD – Any load at the point of axial load application at 90° to the primary axis.

Interface load cells are designed for precision, quality, and accuracy. Though the ranges may differ in specifications slightly, most of the performance data will far exceed industry standards. As we always say, Interface is the standard for load cell accuracy.

We will be outlining additional impacts on accuracy in upcoming posts. If you have questions on any product and specifications, as to whether it is the right load cell for your use case, contact us for help.

Additional Resources

Contributing Factors To Load Cell Accuracy

Application Notes

Accuracy Matters for Weighing and Scales

Interface Ensures Premium Accuracy and Reliability for Medical Applications

Interface Accelerates Accuracy in Test and Measurement

Interface Presents Load Cell Basics

I’ve Got a Load Cell Now What? Episodes 1 and 2

I’ve Got a Load Cell Now What? Episodes 3 and 4

Load Cell Basics Webinar Recap

Interface applications and load cell expert Keith Skidmore was the featured presenter at the latest ForceLeaders Forum hosted event, Load Cell Basics. In his comprehensive presentation, he highlights key subjects including fundamentals of load cell design, sensor specifications, use cases, troubleshooting and valuable performance related topics.

The entire event is now available on the Interface YouTube channel.

In this 60-minute virtual event, Keith highlights commonly asked questions from both new load cell users as well as for advanced engineers and force measurement pros.

What will you learn watching the online Load Cells Basics event?

  • Load cell designs and how they work
  • Capacities, models and how to choose the right load cell
  • Factors that can impact sensor accuracy
  • Performance, moment compensation, creep, and eccentric load sensitivity
  • Calibration and troubleshooting
  • Use Cases and FAQs

The team concluded the event by answering a series of questions from the participants. They addressed advanced technical and set-up questions, as well as frequently asked inquiries about common troubleshooting issues.

Here is a sample of questions that you can find answered in the Load Cell Basics recorded event:

  • Is the temperature compensation achieved using dummy gauges?
  • Does Interface offer or have their own software to read the TEDs?
  • Can we assume that all load cells are intrinsically safe for hazardous locations?
  • What is the IP protection rating for the electrical connection?
  • What is better way to tare load cells, by electronics or mechanical preload?
  • Which is the frequency measurement limit and how fast does the load cell respond?
  • What are recommended amplifier instrumentation brands?
  • What is the most frequent problem when installing a load cell?
  • Does the cables and amplifiers affect the results of the load cell calibration?
  • For an application to 10 kN (2250 lbf), is it too much to use a 2000 lb load cell or should we use the next higher capacity?
  • What is the maximum sampling frequency for strain gage load cells?

WATCH THE EVENT AND Q&A HERE: https://youtu.be/_oHvfAzHMig

If you have additional technical questions or would like to talk about your specific application requirements, contact our Interface Application Engineers here. 

Additional resources for troubleshooting can be found here.

Our Interface Load Cell Field Guide is also helpful for troubleshooting and advanced technical support references.  You can order here.