Posts

Seaside Ports are Optimizing Efficiency and Safety Using Interface Sensor Technologies

Among the various maritime sectors, Interface supplies measurement solutions to infrastructure and equipment makers for ports and waterway terminals that heavily rely on quality measurement solutions.

Ports are critical to our global economy. An estimated 2,500+ ports exist worldwide, with thousands more harbor entries and waterway commerce centers. Interface offers an extensive line of products commonly used in port and terminal applications of all types to modernize equipment and improve operations.

Interface’s sensors and instrumentation are used to test and confirm product designs and measure real-time functions of equipment used onshore, nearshore, and offshore. Our force measurement products are frequently used for modernizing and maintaining port-related machines, moving equipment, and lifts. This includes our submersible measurement solutions.

Our products are perfect for precise load measurement during lifting operations, cargo handling, cargo weight monitoring, mooring line monitoring, and general port equipment maintenance.

The most common use case for Interface products for container stacking and handling. Load cells are integrated into gantry and reach stacker crane systems that lift and move shipping containers. These devices measure the weight of each container, ensuring safe handling and preventing overloading.

Load cells play a vital role in mooring and anchoring systems. They measure the tension on mooring lines and anchor chains, ensuring they can withstand the forces exerted by wind, waves, and currents. This helps prevent ships from breaking free and protects the vessel and the surrounding infrastructure.

Cargo moving and weighing equipment at ports heavily rely on sensor technologies. Conveyor belts transporting bulk goods utilize load cells to measure the product’s weight accurately.

Many port and terminal crane systems incorporate load cells with built-in safety features to prevent overloading and potential accidents. These devices monitor the applied weight and automatically shut down or limit crane operation if the safe limit is exceeded.

The vehicles entering and leaving port terminals with cargo often pass over weighbridges equipped with load cells. These devices accurately measure the vehicle’s weight, ensuring compliance with weight regulations and preventing damage to infrastructure from overloaded vehicles. Scales using load cells ensure high-accuracy measurement.

Our load cell technologies ensure the safe and efficient operation of various port equipment by measuring the weight, tension, and compression forces exerted on different components, allowing operators to make informed decisions and prevent accidents.

Maritime Port and Terminal Applications Using Interface Products

  • Container Weighing
  • Ship-to-Shore Crane Load Monitoring
  • Ship Stability Testing
  • Quick Release Hooks (QRH)
  • Mooring Line Tension Monitoring
  • Dockside and Terminal Equipment
  • Container Handling Machines
  • Ship Loader Booms and Unloaders
  • Gantry Crane Safety Monitoring
  • Straddle Carriers
  • Conveyor Belt Design, Test and Measurement
  • Reach Stacker Automation

Due to the environment, safety requirements, and regulations for maintaining core operations of ports, quality sensor devices must withstand unpredictable conditions, including complete submersible use cases. Interface plays a vital role as a supplier of measurement solutions designed for maritime use. Our rugged weighing and force measurement products are designed for durable operation in areas that utilize waterways to transport goods from port to port.

We offer submersible products that meet harsh and extreme environmental requirements and are rugged in design. These products include our stainless steel load cells, load pins, load shackles, tension links, and several instrumentation devices.

Quick Release Hook (QRH) system

Mooring Lines Quick Release Hooks

A customer wants to test the strength of the cable line used in the hoist of their vessel. Customers need test their Quick Release Hook (QRH) system when their vessels are docked. They want to ensure the mooring lines are secured and the quick-release hooks can be easily and safely released. Interface’s WTSLP Stainless Steel Load Pin can be installed into the quick release hook, where forces from the mooring lines can be measured and displayed when paired with the WTS-BS-4 USB Industrial Base Station. The WTS-RM1 Wireless Relay Output Receiver Module alarm can also be triggered for the customer when maximum safety workload capacities are reached or overloaded. Learn more here.

reach stacker lifting a heavy container

Port Reach Stacker Safety

A reach stacker is a vehicle used in shipping ports and container terminals to lift, move, and stack heavy containers. A force monitoring system is needed to ensure the safety of surrounding personnel and to determine if the reach stacker can lift heavy loads. Interface’s WTSLP Wireless Stainless Steel Load Pins can be installed into the corners of the lifting mechanism of the reach stacker, where heavy-loaded containers are lifted and moved. The force results are then transmitted to the WTS-BS-1-HS Wireless Handheld Display for Single Transmitters or directly to the customer’s PC with the WTS-BS-6 Wireless Telemetry Dongle Base Station. Read more.

Crane Capacity Verification

A customer wanted a system to detect if their crane block could lift heavy loads securely to keep working conditions and personnel safe at docks and other maritime transportation applications. If lifting capacities were exceeded, the customer wanted a system to alarm them in real time. Interface’s Model WTSATL-JR Aluminum Compact Wireless Tension Link Load Cell was used to measure the load’s maximum capacity. The WTS-RM1 Wireless Relay Output Receiver Modules also triggered an alarm when the maximum capacity of weight/force was reached. The data was transmitted and could be reviewed with the WTS-BS-1-HS Wireless Handheld Display or on the customer’s PC. Using this solution, the customer verified if the crane is safe and functional enough to lift its working load limit (WLL) or safe working load (SWL) capacity.

Boat Hoist

A customer needed a boat hoist system to lift boats out of water for maintenance. They wanted a wireless solution to monitor the forces being applied through the hoist system. Interface suggested using multiple WTSSHK-B Wireless Crosby™ Bow Load Shackles at the pick-up points of the hoist mechanism. Data results of the individual loading points and total weight were transmitted wirelessly to the WTS-BS-4 Industrial USB Base Station when connected to a PC or laptop with supplied Log100 software. Interface’s wireless system and solution successfully measured the boat’s weight and ensured it would be safely lifted out of the water.

Integrated seamlessly into various port machinery and equipment, Interface measurement devices provide highly accurate, real-time data to save costs, improve productivity, and keep workers and cargo safe during port operations.

Maritime Approved Solutions

Conveyor Belts Use Load Cells to Keep Things Moving

Conveyor belts are incredibly versatile machines with numerous applications across industries, constantly moving materials from one point to another. During some of the busiest packaging and shipment times of the year, it is a good reminder of why measurement solutions keep things moving fast and efficiently.

Critical for automated manufacturing, conveyor belts rely on precise weight distribution, timing, and speed of the conveyor belt operation to keep production in sync.

Conveyors are used for sorting and merging systems, inspection systems, and automated loading and unloading using robotic arms or other equipment to handle materials efficiently. Their versatility and adaptability make them critical in modernizing industries, including construction, mining, manufacturing, logistics, maritime, and agriculture.

Boxes, cans, bottles, and other packages glide smoothly through packaging lines on conveyor belts, ensuring efficient sorting, labeling, and palletizing. These machines efficiently load and unload ships, trucks, and trains with bulk materials, minimizing manual labor and maximizing throughput. Conveyor belts are crucial in sorting and distributing packages in warehouses and postal facilities, speeding up delivery processes.

It is also important to recognize how specialized conveyor belts transport people in public spaces. Conveyor belts seamlessly whisk luggage from check-in counters to aircraft and vice versa, ensuring a smooth passenger experience.

Force measurement can be applied to testing and monitoring conveyor belts in several ways. One of the most common ways is by using load cells to measure the alignment of the belt. Load cells can detect subtle changes in belt behavior, such as uneven loading or misalignment, which can indicate internal damage like cracks or tears. Early identification of these issues allows for timely interventions, preventing further damage and costly repairs.

Testing the conveyor belt rotation or ability to hold weight is a requirement for equipment makers and engineers. Machine builders use Interface sensors in the design of conveyors. In addition to monitoring the system during peak usage, load cells are instrumental in testing the equipment’s quality and durability.

Load cells on the head and tail pulley shafts continuously monitor belt tension for preventative maintenance. This data helps identify deviations from optimal tension levels, leading to premature belt wear, pulley misalignment, and energy inefficiency.  You can prevent costly repairs and downtime by addressing these issues early on.

Conveyor systems often have multiple belts working in tandem. Load cells can monitor the load distribution across these belts, ensuring balanced operation and preventing the overloading of individual components.

Conveyor Belt Adhesion Test

A customer wanted to test the adhesion strength between a conveyor belt’s many layers and textiles. They wanted to conduct a separation test from the rubber of the conveyor belt from the other layers. They also wanted a wireless solution. Interface suggested a SMA Miniature S-Type Load Cell to be installed in the customer’s tensile test load frame, where it measured the forces applied as the test was conducted and the layers were pulled and separated. When connected to the WTS-AM-1F Wireless Strain Bridge Transmitter Module, the data was wirelessly transmitted to WTS-BS-5 Wireless Analog Output Receiver. The WTS-BS-5 then connected to the 9330 Battery Powered High Speed Data Logging Indicator to display, graph, and log the data with the supplied BlueDAQ software. With Interface’s force measurement system and solution, the customer successfully tested the strength of the adhesion applied to their conveyor belts through the layer separation test.

Force measurement sensors can be built into machines as a real-time monitoring system. This type of force application can let engineers know if there is a problem with the system that needs to be taken down for repairs by reviewing data and seeing discrepancies in the normal forces on the conveyor belt. This is particularly important in maintaining efficiency on production lines to ensure minimal downtown.

Food and Beverage Conveyor Belt equipped with PBLC Pillow Block Load Bearing Load Cells and 920i Programmable Weight Indicator and ControllerFood And Beverage Conveyor Belt

Conveyor belts for the food and beverage industry must be maintained and properly aligned to transport products. A load cell is needed to prevent misalignment and to reduce the risk of damage or malfunction of the belt while in operation. Interface suggested installing PBLC Pillow Block Load Bearing Load Cells onto the conveyor belt. They are designed for easy maintenance. The PBLCs measured and monitored the force of the conveyor belt while preventing misalignment. The PBLC Pillow Block Load Cells successfully maintained the proper alignment of the conveyor belt for the food and beverages being transported while also monitoring the forces being implemented.

In automotive, electronics, and other production settings, conveyor belts move components and products along the assembly line, facilitating efficient workflow and ensuring precise positioning.

Conveyor belts easily handle diverse materials, from transporting heavy metal sheets in steel mills to delicate circuit boards in electronics factories. They are the go-to for transporting vast quantities of mined ores, coal, grains, and other bulk materials over long distances and uneven terrain.

Conveyor belts move waste and recyclables efficiently in processing facilities, ensuring efficient sorting and processing. Industrial automation robotics often supports this as part of advanced conveyor systems.

Automating Conveyor Production Lines

Collaborative robots, known as cobots, are used to working alongside humans next to conveyor belts on the production line. Extensive safety measures must be taken for the conveyor and the robot for optimal efficiency and operations. A multi-axis sensor is a tool for this use case. The 6A40 6-Axis Load Cell is installed at the head of the cobot. The 6A40 6-Axis Load Cell interfaces with the BX8-HD44 BlueDAQ Series Data Acquisition System for data collection of force and torque measurements on the line. The customer connected the BX8’s analog outputs to their control system. As a result, the customer can log, display, and graph these measurements during the robot and belt operations. The results are sent to the customer’s control system via analog or digital output.

Interface products are commonplace in these types of applications. Force measurement is integral to advanced manufacturing systems like conveyor belts. Our sensors are utilized to ensure accuracy and repeatability throughout the production line.

We understand manufacturing test and measurement applications, and our custom OEM solutions are ideal for manufacturers who require direct installation to monitor weight, force, and torque into conveyor belt systems.  Contact our application experts to see how we can help you modernize your conveyor systems with advanced sensor technologies.

ADDITIONAL RESOURCES

Manufacturing Solutions

Interface Solutions for Heavy Equipment

Heavy Machinery Solutions

Production Line Solutions

Interface Solutions for Production Line Engineers

Examining Machine Builder Applications

 

Examining Machine Builder Applications

Interface solutions test and measure the performance of all types of machines, from heavy-duty extraction equipment to tiny digits on robotic arms. Machine builders turn to Interface for the most precise and high-quality sensors for accurate data and device durability.

Responsibilities of machine builders generally include defining machine requirements and use cases, creating technical specifications and drawings, selecting materials and components, building and testing machines, and installing and maintaining machines.

The specific responsibilities of a machine builder vary depending on the size and complexity of the machines they build and the use case of the machine. Depending on the industry and application, machine builders provide systems and machinery to meet specific production and operational requirements. These machines can be used for tooling, assembly, press operations, automated guides, and even cobots.

Machine Builder Applications Using Interface Products

  • Industrial Automation Systems: This includes machines and systems used in manufacturing processes, such as robotic assembly lines, conveyor systems, and automated packaging machines. See: Snack Weighing and Packaging Machine App Note and Interface Manufacturing and Production Solutions
  • Specialized Production Machinery: Machine builders design and build machinery for specific manufacturing processes, such as injection molding machines, CNC machines, or metal stamping presses. These machines form, stamp, and crush materials.
  • Facilities Equipment: Machines like forklifts, cranes, and conveyor systems fall under this category. They are designed to move and handle materials efficiently within a facility. Read: Cranes and Lifting
  • Universal Testing Machines (UTMs): These valuable machines test the mechanical properties of materials like metals, plastics, and composites.
  • Weighing Systems: Used in various production processes like batching, mixing, and filling, weighing systems and scales are commonplace in most manufacturing facilities. Learn more: Load Cells for Smarter and More Efficient Weighing

As the machine building space becomes more precise with the evolution of automation and focus on efficiency across industrial facilities, force measurement becomes more critical to machine builders.

Interface products are used broadly for a variety of machines. Force measurement products, including our load cells, torque transducers, multi-axis sensors, and instrumentation, aid machine builders by measuring force, weight, tension, compression, and torque.

Machine builders use Interface sensor technologies in applications that weigh raw materials, test component designs, and build finished products to ensure they meet the required specifications. Force measurement devices are essential in measuring the machines or the processes force to control product quality and prevent accidents. Machine builders frequently use load cells to monitor loads over time to detect and prevent potential machine problems.

Automation is one of the most critical requirements driving the need for force measurement and precise Interface solutions. Automated processes require consistency and accuracy in every piece of the process to enable efficiency gains.

Benefits of Interface force measurement devices include:

  • Improved safety
  • Increased productivity
  • Reduced waste and operating costs
  • Quality improvement
  • Reduced downtime

Machine Builder Application Notes

Robotic Sanding and Grinder Machine

robotic grinder containing 6A40 6-Axis Load Cell and BX8-HD44 BlueDAQ Series Data Acquisition System

Robotic grinding and polishing are commonly used in manufacturing for industrial applications. Machine builders design robots or cobots to grind and polish on different materials and surfaces. A force measurement system can monitor and control the force exerted on the grinding product. Interface’s Model 6A40A 6-Axis Load Cell can be installed between the flange and the grinding tool. When connected to the BX8-HD44 Data Acquisition, the customer can receive force and torque measurements when connected to their control system using BlueDAQ software. The customer connects the BX8’s analog outputs to their control system. This enables the customer to monitor, log, display, and graph these measurements. The results are sent to the customer’s control system via analog or digital output.

Press Machine Load Monitoring

Press forming is a method to deform different materials. For instance, materials such as steel can be bent, stretched, or formed into shapes. A force measurement solution is required to monitor the forces being applied by the press-forming machine. This ensures quality control and traceability during the production process. Interface recommends installing the 1000 High Capacity Fatigue-Rated LowProfile™ Load Cell for large press forming machines. When the material is placed under the punch plate to create a shape, the force applied is measured by the 1000. The captured force results are sent to the INF-USB3 Universal Serial Bus Single Channel PC Interface Module, where results can be graphed and logged on the customer’s PC using the provided software. Interface’s force measurement products and instrumentation accurately monitored and logged the force results of the press force machine, ensuring zero-error production performance.

Food and Beverage Conveyor Belt equipped with PBLC Pillow Block Load Bearing Load Cells and 920i Programmable Weight Indicator and ControllerMachine Use for Conveyor Belt

Conveyor belts for the food and beverage industry must be maintained and adequately aligned to transport products. A load cell is needed to prevent misalignment and to reduce the risk of damage or malfunction of the belt while in operation. Interface suggests installing PBLC Pillow Block Load Bearing Load Cells onto the conveyor belt. They are designed for easy maintenance. The PBLCs measure and monitor the force of the conveyor belt while preventing misalignment. The PBLC Pillow Block Load Cells successfully maintain the proper alignment of the conveyor belt for the food and beverages being transported while also monitoring the forces being implemented.

Machine builders turn to Interface for solutions that support Industry 4.0 innovations, enabling more efficiency and machine advancements. These professionals rely on Interface for the accuracy and quality of our solutions, the depth of our product offerings, and our experienced team that can help our customers select the right solution for their next application or develop custom applications to fit unique needs.

ADDITIONAL RESOURCES

Force Measurement Sensors are Essential to Modern Industrial Machinery

Interface Load Cells for Press Machines

Seat Testing Machine

Hydraulic Press Machines and Load Cells

Sanding Machine Force Monitoring

Interface Solutions for Machine Builders

Metal Press Cutting Machine

Robotic Solutions

Collaborative Robots Using Interface Sensors

Fastening Work Bench

 

Detailing Pillow Block Load Bearing Load Cells

A pillow block bearing is usually used to create a rolling system. This bearing type is often used for industrial rolls for textiles, paper, and materials. It is also used on conveyor belts in manufacturing facilities. Other common use cases in various industries include transportation, medical device design, and aerospace.

Interface offers specialized load cells that measure and monitor weight and other forces on pillow block bearings, aptly known as Interface Pillow Block Load Bearing Load Cells. The force measurement is performed for this load cell between two supports.

Pillow Block Bearing Load Cell Spans Multiple Industries

Pillow block bearing load cells are important in all industries where accurate load measurement is required during production and use of small and large rollers. Some examples include:

  • Steel industry: Pillow block load cells can be used in roller mills to measure the force required to crush or shape steel.
  • Textile industry: Pillow block load cells can be used in textile machines such as looms and knitting machines to measure the tension on the yarn.
  • Packaging industry: Pillow block load cells can be used in packaging machines to measure the force required to cut or seal packaging materials.

Pillow block load cells are valuable in building and enhancing infrastructure. Our PBLC1 is a great solution for monitoring trains on a track in motion. When our PBLC1 is installed on a track, and the train runs across it, the sensor can provide a signal to a station elsewhere in the world. If any force indicators suggest that there could be a problem with the weight the train is holding or the train itself, the sensor can also trigger an automatic shutdown of the train. These sensors could prevent major damage from train derailments and other train-related incidents by detecting errors before they inflict damage.

These weights are important to measure or monitor as they can tell you if you run out of material on a roll or if a production line conveyor belt is holding too much weight. An example of the feed roller system using our wireless options is below.

Manufacturing Feed Roller System

Feed roller systems are common in production and manufacturing. In this example, a feed roller system needs to monitor the forces of both ends of the rollers to maintain a constant straight feed. This reduces waste and ensures quality in the product use. They would also prefer a wireless system. Interface suggests installing two PBLC Pillow Block Load Cells at both ends of the bottom roller to measure the applied forces. The measurement output is sent to the instrumentation device, our WTS-AM-1E Wireless Strain Bridge Transmitter Module. The data is then transmitted wirelessly to the WTS-BS-6 Wireless Telemetry Dongle Base Station and the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, where data can be displayed, graphed, and logged a computer. Learn more about this type of use case in our Feed Roller System Application Note.

In addition to this use case, here are a few other ways Pillow Block Load Cells are used to measure weight and force:

  • Material handling: Pillow block load cells are commonly used in conveyor systems to measure the weight of transported materials.
  • Automotive industry: Pillow block load cells are used in assembly line applications to measure the weight of assembled parts and components.
  • Heavy machinery: Pillow block load cells are used in cranes, bulldozers, and other heavy machinery to measure loads and monitor the equipment’s performance.
  • Manufacturing: Pillow block load cells are used in material testing machines to measure the force required to break or deform materials.
  • Aerospace: Pillow block load cells are used in aerospace applications to measure the weight and balance of aircraft and spacecraft.
  • Medical industry: Pillow block load cells are used in medical equipment such as patient lifts and hospital beds to measure patients’ weight.
  • Food industry: Pillow block load cells are used in food processing and packaging equipment to measure the weight of ingredients and finished products.

Pillow Block Bearing Load Cells Product Overview

This type of force sensor is suitable for measuring forces under pillow block bearings for diameter Ø 20mm (Ø 0.79 in) and for measuring axle weight in test stands for trains and vehicles. Our system is compatible with INA Pillow Block Bearings and is installed underneath the bearing to measure force. There are three model versions, with the options for additional multi-axis measurements for engineers to order products.

PBLC1 Pillow Block Load Bearing Load Cell

PBLC2 Pillow Block Load Bearing Load Cell

PBLC3 Pillow Block Load Bearing Load Cell

Features and benefits of our Pillow Block Load Cell include:

  • Capacities from 5 to 30 kN (1.1K to 6.7K lbf)
  • Compatible with INA pillow block bearings
  • IP65 moisture protection
  • Rugged electro-galvanized surface

In addition, our Pillow Block Load Cell is also available in multi-axis versions, allowing more force data from your test application. This helps measure forces such as the center of gravity, tension across a load-bearing beam, and more. These multi-axis versions come in two and three-axis models. If you want accurate measurements for your pillow block-bearing use cases, contact our specialized application engineers.

ADDITIONAL RESOURCES

Interface Manufacturing and Production Solutions

Quality Engineers Require Accurate Force Measurement Solutions

Interface New Product Releases Winter 2023

Infrastructure Industry Relies on Interface Force Measurement

Interface Solutions for Production Line Engineers

Industrial Automation

 

Interface Manufacturing and Production Solutions

Force measurement is integral to advanced manufacturing systems, especially when it comes to how this technology is used in production lines. Force sensors are utilized in both testing and monitoring of a wide variety of machines to ensure accuracy and repeatability throughout the production line. These sensors are also used by production line engineers in the design and development of systems used to ensure accuracy in measurements of force, weight, compression, and torque as products and components move throughout the line, including distribution.

Watch how Interface provided an industrial automation solution for small pallets used in the distribution of manufactured products. In the video, we highlight a request for a pallet weighing solution to use in their warehouse to monitor their products and goods 24/7. They need to use sensor technologies to verify if any products are missing based on the weight, and able to determine pricing for their goods based on the weight.

Interface works with a large range of manufacturers and equipment makers to improve quality and productivity by supplying high-performance measurement solutions. From using miniature load cells to apply the exact force needed to press a brand identity onto fragile consumable, to using multi-axis sensors for verifying performance data when making intricately machined parts, Interface products are commonplace in manufacturing and production.

In fact, Interface offers manufacturing and production standard off-the-shelf, engineered to order and complete OEM solutions including load cells, instrumentation and weighing devices. Our products provide the quality and durability necessary within industrial environments. In addition, we can customize the majority of our products to fit unique and evolving needs as sensor technologies like robotics and advanced manufacturing devices are integrated into production lines.

Load cells are frequently used in monitoring equipment. Interface can custom design force sensors to be installed directly into product for monitoring certain forces in real-time, including for use in industrial automation robotics. This is particularly popular in manufacturing because you can monitor equipment to understand when it may be out of alignment and needs to come down for repair, rather than risking a disruption in production. This is particularly important in automated production lines because it gives engineers and extra set of eyes on machines and improves efficiency overall by reducing downtime.

One of the unique use cases for load cells used for monitoring is in weighing materials held on pillow blocks bearings. Pillow block bearings, or similarly constructed bearing, are used to carry rolled materials or conveyor belt. Interface’s new PBLC1 Pillow Block Load Bearing Load Cell can be placed underneath the bearing to measure the weight of whatever material is being held up. These types of bearing are often found in machines with similar type of bearing are used on conveyor belts moving products down a production line.

Manufacturing Feed Roller System

A customer has a feed roller system and needs to monitor the forces of both ends of the rollers, in order to maintain a constant straight feed. They would also prefer a wireless system. Interface came to the rescue with our Pillow Block Load Cells and WTS Wireless Telemetry Systems. Interface suggests installing two PBLC Pillow Block Load Cells at both ends of the bottom roller to measure the forces being applied. The forces are measured when connected to WTS-AM-1E Wireless Strain Bridge Transmitter Module. The data is then transmitted wirelessly to the WTS-BS-6 Wireless Telemetry Dongle Base Station and the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, where data can be displayed, graphed, and logged on the customer’s computer.

Production Line Conveyor Belt Adhesion Test

A customer wants to test the adhesion strength in between the many layers and textiles of a conveyor belt. They want to conduct a separation test from the rubber of the conveyor belt from the other layers. They would also like a wireless solution. Interface’s SMA Miniature S-Type Load Cell is installed in the customer’s tensile test load frame, where it measures the forces applied as the test is conducted and the layers are pulled and separated. When connected to the WTS-AM-1F Wireless Strain Bridge Transmitter Module, the data is wirelessly transmitted to WTS-BS-5 Wireless Analog Output Receiver Module with nV output. The WTS-BS-5 can then connect to the 9330 Battery Powered High Speed Data Logging Indicator to display, graph, and log the data with supplied BlueDAQ software.

Industrial Automation Robotic Arm for Production

A manufacturer of a robot arm needs to measure force and torque when the arm picks up and places objects. The manufacturer needs a wireless system to accomplish this in order to log the measurement results. Interface supplied Model 6A40A 6-Axis Load Cell with Model BX8-HD44 Data Acquisition/Amplifier.

Interface force sensors can be used in a number of ways within the manufacturing industry across a variety of applications for the test and monitoring of machines and production lines.

ADDITIONAL RESOURCES

Force Measurement Solutions for Advanced Manufacturing Robotics

Robotics and Automation are Changing Modern Manufacturing at Interface

Vision Sensor Technology Increases Production Reliability

Industrial Automation Brochure

Weighing Solutions Brochure

Smart Pallet Solution

Interface Solutions for Safety and Regulation Testing and Monitoring