Posts

Powering Up Precision Machine Building and Automation Webinar

Interface’s new webinar explores the world of load cells, torque transducers, multi-axis sensors, wireless technologies, and instrumentation used in machine building and automation. Get engineering tips on the latest advancements in sensor technology, including miniaturization, wireless integration, and the rise of the Industrial Internet of Things (IIoT). Join us to explore building smarter, more responsive machines.

Exploring Capabilities of New Products Webinar Recap

Interface’s latest ForceLeaders webinar, Exploring Capabilities of New Measurement Products, provides an overview of 20 new products with details on specifications, features, and sample applications. The recorded event introduces several new measurement products across various categories, including load cells, torque transducers, multi-axis sensors, instrumentation, accessories, and systems.

Brian Peters, VP of Global Sales at Interface, and Ken Bishop, Senior Director of Custom Solutions, detailed the various product categories and provided essential testing tips to consider for each product. They highlighted capabilities, different use cases, and applications for each product.

Interface’s expanding catalog has over 40,000 SKUs across load cells, torque, instrumentation, calibration systems, and accessories. New products are continuously added, driven by customer needs and industry trends like digitalization, complete systems, multi-axis sensors, submersibles, and wireless connectivity. The following is a recap of some of the products detailed during this comprehensive review.

New Load Cell Models

Ken introduced several new load cell models like the stainless steel ITCA series, which are available with IP67 protection and have capacities ranging from 1 to 150 metric tons (MT) (2.2K to 330.6K lbf). Typical applications are structural testing, jack load and cable tension monitoring, material test machine feedback, and press load monitoring. The ICPA compression model ranges from 2 to 1000 MT (4.4K to 2204K lbf) in a smaller package with optional dome caps and mounting bases. The IO link-enabled 1200 LowProfile Load Cell models for optimizing machine integration and process controls are ideal for the growing digital network environments. Additional products detailed in this section include the A4200 and A4600 WeighCheck™ Load Cells, the new SSLP Stainless Steel Low Profile Universal Load Cell, and our pillow block load cells PBLC1 Pillow Block Load Bearing Load CellPBLC2 Pillow Block Load Bearing Load Cell and PBLC3 Pillow Block Load Bearing Load Cell.

Additions to ATEX Load Cell Line

Two new ATEX-approved load cells are reviewed during the event, including a rod-end style 3450 series and a 3411 Intrinsically Safe Compression-Only LowProfile® Load Cell with an internally amplified 4-20 mA output, loop-powered. Appropriate hazardous environment classifications must be reviewed carefully for proper installation.

New Torque Transducers

During the webinar, Brian introduced the lower-cost T18 rotary torque sensor. This valuable transducer is contactless and suits various test stands without needing separate encoders. It’s a great sensor for testing anything that spins. The TSCF C-Face Flange Torque Transducer wired and non-rotating model allows torque and pass-through mounting on standard C-face motor frames for conveyors, pumps, and other systems. It is available in capacities from 288.5 lbf-in to 885 lbf-in (10 Nm to 100 Nm).

Multi-Axis Sensors

New multi-axis sensors, like the 2-axis AT-104, are valuable for combined reaction torque and axial force cable testing. Customers use this for low-range combined force and torque testing, off-axis friction characterization, and articulating component testing. The AT-105 is available in capacities from 100/2, 250/5, & 500/5 N/Nm (22.5/17.7, 56.2/44.3, & 112.4/44.3 lbf/lbf-in). It measures torque, speed, and force for bearing tests. A new 3-axis load cell, the 3AR Series Round 3-Axis Load Cells, has a high Z-axis capacity that matches the BX8 data logger well. The 6-axis 6ADF series incorporates a DIN mounting flange for robot arm integration.

Load Pins, Shackles and Tension Links

Interface’s expanded line of load pins, shackles, and tension links offers a range of standard and custom solutions with integrated wireless options. The new ILMP Standard Stainless Steel Load Load Pin is a great standard load pin, available from 1.1K lbf (500 kgs) to 3,307K lbf (1500 MT). They work well for lifting, rigging, and inline tension applications. Load pins can be fully customized to fit unique mounting requirements with options for redundant bridges or special connectors.

New Instrumentation

A range of new instrumentation is covered, like the multi-channel 9325 indicator with 2400 Hz sampling, software, and TEDS support. The battery-powered 4850 replaces a previous model for outdoor weighing applications. The multi-function JB1100 junction box sums 4 load cell channels and options for CAN bus, Bluetooth, and analog outputs. The compact IF500 Load Cell Simulator generates precision load cell simulation signals for field use. And the 9840C TEDS Read/Write Intelligent Indicator has coefficients for use with up to 20 load cells. Additional instrumentation highlighted during the technical seminar include the BSC1-HD Single Channel PC Interface Module with Analog Output, the BSC4D-BT Portable 4-channel Bluetooth Data Logger, and the various models of INF4 Two, Three, and Four Sensor Weight Transmitter and Indicator and INF1 Single Sensor Weight Transmitter and Indicator.

Accessories and System Offerings

Interface provides diverse accessories like bases, couplings and enclosures tailored to load cells and torque sensors. We also offer integrated systems that include sensors, data acquisition, software, displays and reporting for wireless devices, multi-axis sensors, torque testing, simulation, instrumentation calibration, and other applications. You can see the options covered in our Data AQ Pack Brochure. Customization services can modify standard products or build complete OEM solutions to customer requirements. Consider customized system development services from Interface for fully integrated deployments. It saves time and money.

The webinar concluded with a checklist of starter questions for planning testing projects covering the goals, measurements, cycles, environments, data usage, installation, connections, storage, and reporting requirements.

  • What are you measuring?
  • What are the number of cycles required in your test plan?
  • What is the environment for your project?
  • How will you use the measurement data?
  • What are the requirements for mounting and installation?
  • How will you be connecting your devices to instrumentation?
  • Where are you storing your data?
  • Will you need software to analyze your results?

Research Interface’s catalog of load cells, torque sensors, instrumentation, and accessories for models potentially fitting my application requirements. Be sure to consult Interface application engineers on recommendations for complete measurement solutions optimized for your specific use cases.

WATCH THE WEBINAR

Exploring New Measurement Products Webinar

The Interface Exploring Capabilities of New Measurement Products Webinar details new products, including sensors, instrumentation, and accessories. Our experts will cover dozens of new additions to the extensive 40,000-plus product catalog of force measurement solutions. Interface engineers highlight product features, capacities, use cases, and technical tips in the fast-paced new technical online seminar.

Building a Clean Energy Future in Hydrogen with Force

Clean energy is a driving force of innovation, technology, and investment in the global economy. Established energy giants and nimble startups are pouring resources into sustainable solutions. Among them, hydrogen shines as a particularly exciting frontier. The global hydrogen generation market is estimated to be $170B and growing, with an estimated 2,000 hydrogen production-related projects globally.

As with any evolving technology, monitoring and testing are necessary to qualify and improve the various systems that validate inventions and advance adoption. Interface has worked with clean energy suppliers and equipment manufacturers for many years. We have gained much experience in understanding the complexities and requirements of testing and monitoring alternative energy sources.

Among the various clean energy harvesting and storage solutions available today, hydrogen is among the most researched and impactful clean energy options. Hydrogen is considered a clean fuel that produces only water when consumed in a fuel cell. Hydrogen can be produced from biomass, natural gas, nuclear power, and renewables, including solar and wind. Read: Load Cells for Renewable Energy Production and Testing

Due to experience as a supplier of force measurement solutions for energy providers and equipment makers, Brian Peters contributed a new article about the dynamics of applying force testing in hydrogen energy to the Winter Edition of Global Hydrogen Review. His article highlights the current state of hydrogen energy and the barriers that force measurement is helping to solve. He details force-testing solutions for novel technologies that transport, monitor, and store hydrogen energy.

The full article can be read on page 19 of the December 2023 edition of Global Hydrogen Review here. We’ve also included a brief preview of the article below.

Feel The Force

By Brian Peters, VP of Global Sales, Interface

Hydrogen, as a clean and reliable renewable energy source, has been a carrot on a stick for green energy innovators for many years. Scientists and technologists have understood the positive impact of hydrogen for a long time and even harnessed it at times, but the ability to reliably transport, store, and harness this energy at a reasonable cost has previously eluded them. However, hydrogen is back in full force as storage and battery technology has advanced, giving new life to the promise of hydrogen.

Hydrogen is critical to the future of green energy because it is an optimal solution to storing renewable energy from other sources such as wind and water. In certain areas, like California, we produce too much energy from renewable sources but have nowhere to store it. This is leading to a tremendous amount of resource loss. Therefore, hydrogen innovation investment is on the rise again to solve production, storage, and monitoring application challenges aimed at curtailing waste and holding enough energy to power more infrastructure with green energy.

To start, hydrogen production in its current state is quite expensive as the element is difficult to handle, and the equipment and processes available today are scarce or subpar. Many of the traditional production and storage methods also lead to excessive waste.

One of the key reasons that storage has become such a challenge is due to the unique nature of hydrogen energy. Hydrogen is an incredibly light element in liquid form, which is a popular way of storing it in higher volumes. However, in this form, it can be very volatile and hard to maintain due to temperature constraints, and therefore, storage, metering, and more require extreme precision. While in a compressed form, hydrogen takes up more space and needs to be carefully monitored for pressure-related concerns.

Due to the volatility of hydrogen energy, transportation has also become a barrier to the reliable transfer and use of hydrogen energy. The cost alone of transporting liquid or compressed hydrogen can become immense with the current lack of stable transportation/storage methods and the danger it can pose to the individuals shipping the substance.

The road to reaching a place where hydrogen could become a real solution to meeting the demand for renewable energy has been filled with hundreds of technological advancements. One of the lesser-known but extremely critical solutions to making hydrogen a reality on a large scale is force measurement. Force sensors can be used at every level of hydrogen advancement, from harnessing the power of hydrogen to storing, monitoring, and transporting it – and more use cases for hydrogen applications are being implemented frequently. Read More

ADDITIONAL RESOURCES

Load Cells for Renewable Energy Production and Testing

Interface Details Hydrogen Electrolyzers Solution in Design News

Interface and Green Energy Innovation

Interface Load Cells Propel New Torsional Force Measurements for Wind Energy Project

Interface Supports Renewable Energy Innovation

Interface Solutions for Growing Green Energy

Demands for Quality Energy Measurement Solutions

Windmill Energy App Note

Wave Energy Converter

Biomass Handling

Webinar Recap of Taking Measure of Miniature Load Cells

Interface’s first event of 2023 focuses on a growing line of miniaturized load cells and torque transducers.  The presentation by Brian Peters and Justin Walker emphasizes that though the form factor is small for Interface Minis, accuracy and measurement capacities are high.

Through out the event Taking Measure of Miniature Load Cells, Interface product experts detailed specific applications and use cases for miniature force measurement devices. Interface’s Minis are commonly used across all types of industries from medical device testing to embedded sensors in machines to provide real-time system health and performance data.

Watch the recorded event here.

After inventing the LowProfile load cell more than five and half decades ago, Interface engineers and founder first introduced the miniature s-type load cells in 1974.  How does Interface classify a miniature load cell?

  • Miniature load cells are engineered for use in applications for light touch, light weight, or for less space. 
  • Miniature load cells provide exceedingly accurate measurements similar to our full-size load cells with proprietary alloy strain gages. 
  • Miniature load cells can measure both tension and compression.
  • Miniature load cells and torque transducers are available in a wide range of capacities and models.
  • Miniature load cells are not just small in physical size, they also have a range to test minimal forces with extremely high accuracy
  • Interface defines our trademarked Mini™ Load Cells as anything that isn’t a low profile load cell

The team also covered new products that provide extremely high accuracy measurement in very small envelopes, including our new SuperSC, ConvexBT, the popular WMC and MRT, along with our new Pillow Block Load Cells. They also highlight some of the special options, including wireless and submersible products. Throughout the recorded event, products were introduced to showcase the range and options available for miniature load cells and torque transducers, including:

  • Miniature beam load cells
  • Miniature load button load cells
  • Miniature load washers
  • Miniature tension and compression, compression only load cells
  • S-type load cells
  • Miniature sealed stainless steel load cells
  • Column rod end miniature load cells
  • Torque transducer miniatures

You can watch the entire event online on the Interface YouTube Channel. You don’t want to miss out on the answers to our most frequently asked questions, like do you can you calibrate a load button or can you make a mini load cell without cables (wireless)?  They also give you the details on the smallest measurement capacity for a miniature load cell and the largest measurement capacity for an Interface miniature. Can you imagine a million lbf mini? Tune in to learn more and a special section on do and don’t tips.

Additional Resources

Miniature Torque Transducers 101

New Technical White Paper Analyzes SuperSC S-Type Miniature Load Cells

Interface Introduces SuperSC S-Type Miniature Load Cell

Superior S-Types Webinar Recap and New SuperSC

MTFS Miniature Tension Force Load Cell

WMCF Miniature Sealed Stainless Steel Load Cell

WMCP Overload Protected Stainless Steel Miniature Load Cell with Male Threads

Electric Vehicle Battery Load Testing Feature and Application

The demand for quality load cell sensors and testing technology solutions in the electric vehicle market is high. This extends into the innovations and testing related to electric vehicle batteries. Design engineers and automotive manufacturers are looking for ways to extend the life of the EV battery, while also seeking ways to maximize overall vehicle performance.

Interface application engineers have been working to provide standard and custom solutions to EV battery manufacturers and testing labs for R&D, prototyping, and performance monitoring. It has sparked recent publications to reach out to Interface to discuss the types of force measurement devices that are being used, along with supportive instrumentation for various tests related to the electric vehicle market.

We’ve captured one of these use cases in the new application note, Electric Vehicle Structural Battery Testing.

The initial requirements for this application were to validate structural battery pack design, both in terms of life expectancy against design targets as well as crash test compliance and survivability.  Interface recommended utilizing 1100 Ultra-Precision LowProfile Load Cells in-line with hydraulic or electromechanical actuators within a structural test stand. The 6-Axis Load Cells were used to capture reactive forces transmitting through pack structure. These multi-axis sensors provide more measurement data and brings greater system level insight and improved product success. Using this configuration, the tests performed using Interface’s force measurement products validated the battery packs strong structural design. Read more here.

Recently we shared our experience in working with companies to provide load cells for testing batteries.  The details of this interview with DesignNews are highlighted in a brief excerpt below. Read the entire article here.

BATTERY LOAD TESTING PRESENTS NEW OPPORTUNITIES FOR INTERFACE

By Dan Carney at DesignNews

The Arizona force management specialist is finding new opportunities for its load cells testing batteries.  In addition to measuring the strength of the battery case, it is also important for automakers to measure the pressure of the cells inside the case. In both situations, force management solutions from Interface, Inc. (Scottsdale, Arizona) are beneficial.

“FEA and computerized modeling get the customer most of the way there,” observed Interface vice president of global sales Brian Peters in a phone interview with Design News. “Automotive OEMs are spending more time on various structural development testing,” he said. “They are push-pull, multi-axis similar to what we see with aerospace fuselage testing.”

This is important because, in addition to the torsional loads normally applied to the battery box in the course of normal driving, there is also the need to model for worst-case crash scenarios.

“You have basic (noise, vibration, and harshness) torsional rigidity requirements, but then you have the crash requirements,” Peters noted. “How do you model, test, and have successful test results? When you run the full system into the barrier, sometimes the outcome is hard to model.”

ADDITIONAL RESOURCES

Feature Article Highlights Interface Solutions for EV Battery Testing

EV Battery Testing Solutions Utilize Interface Mini Load Cells

Electric Vehicle Battery Monitoring

Interface Helps to Power the Electric Vehicle Market Forward

Test and Measurement for Electric Vehicles

Torque Measurement for Electric Vehicles App Note

The Future of Automotive is Electric

Feature Article Highlights Interface Solutions for EV Battery Testing

In the recent article, Force sensors find opportunity in electric vehicles, battery assembly by Dan O’Shea of Fierce Electronics, the feature details increasing use of force measurement technologies in the EV industry.

In this must-read piece, Brian Peters was interviewed to share Interface’s role and growing support for the testing of electric vehicle components including electric vehicle battery testing.

In the article, the author highlights the different use cases for sensor technologies in the EV market. Interface shared our experience in supplying vehicle force measurement solutions for EV batteries chemical mixing, batch weighing scales, battery assembly machines, tension monitoring, material tests, structural tests and more.

Dan writes, “In the automotive sector, one of the most important areas where force sensor technology can play a role is in the manufacturing of electric vehicle batteries, as well as testing and monitoring batteries for quality assurance.”

He continues, “Brian Peters, vice president of global sales at Interface Force Measurement Solutions, told Fierce Electronics that the need for force sensors in EV battery applications has grown rapidly as more new automakers and battery manufacturers have appeared on the scene and consumer interest in EVs has risen.”

An example of one of these applications is detailed in use case of Electric Vehicle Battery Monitoring.

ELECTRIC VEHICLE BATTERY MONITORING

Interface’s customer was designing a system to monitor lithium-batteries used in electric vehicles. Typically, lithium-batteries are measured through ICV to monitor and analyze life and performance. Interface suggested using our LBM Compression Load Button Load Cell in between two garolite end plates, and measuring the force that is created from cell swelling or expansion. Instead of monitoring through voltage (ICV), this method is based on measured force (ICF). Paired with the 9330 Battery Powered High Speed Data Logging Indicator, force results can be displayed, recorded, and logged with supplied software. 

Additional Resources

Interface Automotive Force Measurement Solutions

Automotive + Vehicle Brochure

Advancing Auto Testing with Interface Measurement Solutions

Torque Measurement for Electric Vehicles App Note

Interface Helps to Power the Electric Vehicle Market Forward

The Future of Automotive is Electric

Test and Measurement for Electric Vehicles

 

 

I’ve Got a Load Cell – Now What? Episodes 3 and 4

Continuing our review of the popular webinar series, I’ve Got a Load Cell – Now What?, we are detailing the third and fourth episodes. The focus of these two installments is documentation that you should expect with every load cell and the fundamentals of load cell output.

Digging into documentation is an important subject for anyone that is buying or using load cells for test and measurement. It is also a differentiator in the quality and type of manufacturer that makes your device. The details provided in load cell documentation validates the characteristics and performance, as well as experience and craftmanship used in the engineering and construction of your load cell.

When quality and accuracy matters, documentation and certification are critical verification evidence.

Load Cell Documentation: Datasheets and Calibration Certificates

Interface provides detailed datasheets for every load cell model number. On the top of the datasheet, the Interface model number precedes the description of the load cell’s primary characteristics, such as 1200 Standard Load Cell. The Interface Calibration Certification accompanies every sensor device we manufacturer and ship from our U.S. headquarters, confirming the final condition prior to release. Interface calibrates every load cell we make before it leaves our facilities as part of our performance guarantee.

INTERFACE DATASHEET FUNDAMENTALS

  • Features and Benefits
  • Standard Configuration and Drawings
  • Dimensions
  • Specification Parameters Based on Model and Capacity
  • Detailed Measurement and Performance Data for Accuracy, Temperature, Electrical and Mechanical
  • Options
  • Connection Options
  • Accessories

Special note for datasheet reviews, the models that use the same form factor are often on the same datasheet with varying capacity measuring ranges in U.S. (lbf) and Metric (kN) information.  All Interface datasheets are available for review and download for every product we offer, including load cells, torque transducers, multi-axis sensors, mini load cells, load pins and load shackles, instrumentation and accessories.

INTERFACE CALIBRATION CERTIFICATES DETAILSIQ

  • Model Number
  • Serial Number
  • Bridge and Capacity
  • Procedures
  • Input and Output Resistance
  • Zero Balance
  • Test Conditions: Temperature, Humidity and Excitation
  • Traceability
  • Shunt Calibration
  • Performance Test Data of Test Load Applied and Recorded Readings
  • Authorized Approval

The performance information detailed on the certificate is important for how it was calibrated, how it performed at release, system health checks and troubleshooting. Watch the episode #3 of I’ve Got a Load Cell – Now What? for additional information about datasheets and cal certs.

Fundamentals of Load Cell Output

Load cells are used in one of two ways, either universal (bipolar) or single mode (unipolar). Bipolar is for measuring tension and compression. Unipolar is for measuring either tension or compression. This use type will dictate what output you will get from the load cell. Most Interface load cells are a tension upscale device, which means you will get a positive output when it is placed in tension.

Standard load cells are usually unamplified mV/V ratio metric output. Interface does offer amplification signals for our load cells, which is a common request when pairing with a data acquisition system. In episode #4 of I’ve Got A Load Cell – Now What?, Elliot provides an example of mV/V ratio metric when using a 5000 lbf LowProfile Load Cell with our 9840 Instrumentation.

For questions about datasheets, calibration certifications or performance and capacities, please contact our application engineers.

ADDITIONAL RESOURCES

Interface 1200 Precision LowProfile Load Cell Series Product Highlight

Load Cell Basics Technical Q&A Part One

Load Cell Basics Technical Q&A Part Two

Understanding Load Cell Temperature Compensation

Load Cell Basics Sensor Specifications

 

I’ve Got a Load Cell – Now What? Episodes 1 and 2

Interface has produced more than 100 videos, all available on our Interface YouTube channel.  We provide product videos, industry and application use cases, training, software, and set-up instructions, ForceLeaders webinars, and video discussions with our force measurement solutions experts.

One of our most popular videos is our webinar that answers the question, I’ve Got a Load Cell – Now What? In this online seminar, we discuss some of the basics about load cells, as well as offer tips for checking the health of your load cell, installation tips, usage best practices and monitoring performance.  The series concludes with an in-depth Q&A session. As with all good material, we offer a modern remake to this valuable online resource with a refreshed 7-part series that addresses important load cell topics with visual demonstrations.

In the updated series, I’ve Got a Load Cell – Now What, Interface’s Brian Peters and Elliot Speidell cover the following load cell basic topics:

  • Episode #1 Visual Inspection of Your Load Cell
  • Episode #2 How to Read the Load Cell Label
  • Episode #3 Load Cell Documentation: Datasheets and Calibration Certificates
  • Episode #4 Fundamentals of Load Cells
  • Episode #5 Load Cell Instrumentation Tips and Setup
  • Episode #6 Checking Load Cell Health and Usage Best Practices for LowProfiles, SM S-Type Load Cells and Miniature WMC Load Cells
  • Episode #7 Q&A with Brian and Elliot address incoming questions on what to do

Over the next several weeks, we’ll be highlighting some of the material that is covered in these short clips.  Today’s focus is about visual inspection and how to read a load cell label.

Visual Inspection of Your Load Cell

Visual inspection is critical for all load cells. The good news is that Interface provides quality-controlled inspection of all load cells before they leave our factory. If you are about to utilize a load cell that you have had on the shelf or has not been used for a while, visual inspection is an important first step. In this video, Brian highlights what to look for during your inspection:

  • Thread damage
  • Condition of the exterior load cell
  • Noticeable wear from exposure
  • Check for any rust
  • Inspect connectors and pins

Watch I’ve Got a Load Cell – Now What? Begin with Visual Inspection


Upon your inspection, if you would like Interface to provide a detailed inspection and calibration service before you utilize an existing sensor, contact our services team.

How to Read Interface Load Cell Labels

In this short episode, we highlight how to read an Interface load cell label. Every device we manufacturer has essential information about the sensor detailed on the label. You will find the model number, capacity, serial number and often you find options and option codes that detail the exact sensor features. Labels can also provide output data from time of calibration. To get a complete run-down on what is on Interface labels, watch I’ve Got a Load Cell – Now What? Reading Interface Sensor Labels.

Looking for more videos or resources, be sure to go to Interface’s online support resources. You will find diagrams, installation manuals, technical and troubleshooting details, educational videos and more.

ADDITIONAL RESOURCES
Interface Presents Load Cell Basics
Load Cell Basics Technical Q&A Part One
Load Cell Basics Technical Q&A Part Two
Get an Inside Look at Interface’s Famously Blue Load Cells