Posts

Interface Supports Wind Tunnel Testing

In the development of an airborne vehicle, like a plane or helicopter, wind tunnel systems are used to gather data across a variety of tests related to the aerodynamics of the vehicle’s design. Whether an object is stationary or mobile, wind tunnels provide insight into the effects of air as it moves over or around the test model. Interface is a supplier of measurement solutions used for aircraft and wind tunnel testing.

Wind tunnels are chambers that test small scale model versions of full systems, or in some cases, parts and components, depending on the size and capabilities of the wind tunnel. They work by allowing the engineers to control airflow within the tunnel and simulate the types of wind force that airplanes and other aircraft will experience in flight. Wind tunnels are also used for testing automobiles, bicycles, drones and space vehicles.

By taking careful measurements of the forces on the model, the engineer can predict the forces on the full-scale aircraft. And by using special diagnostic techniques, the engineer can better understand and improve the performance of the aircraft.

The process for measuring the force and how it reacts to this force works by mounting the model in the wind tunnel on a force balance or test stand. The output is a signal that is related to the forces and moments on the model. Balances can be used to measure both the lift and drag forces. The balance must be calibrated against a known value of the force before, and sometimes during, the test.

Interface’s strain gage load cells are commonly used in wind tunnel testing due to their quality, accuracy and reliability. The instrumentation requirements often depend on the application and type of test. The range of options for both load cells and instrumentation vary based on scale, use, cycle counts, and data requirements.

Instrumentation used in wind tunnel testing can be as simple as our 9325 Portable Sensor Display to a multi-channel data acquisition system. Interface analog, digital and wireless instrumentation solutions provide a range of possibilities. As is the case, wind tunnel testing is typically very sensitive. It is important to calibrate the instrumentation before each test to measurement accuracy.

Types of Wind Tunnel Tests Using Force Measurement Solutions

  • Lift and drag: Load cells are used to measure the two most significant forces that impact aircraft design. Lift is the force that acts perpendicular to the direction of airflow and keeps the craft airborne. Drag is the force that acts parallel to the direction of airflow and opposes forward motion.
  • Side force: This force acts perpendicular to both the direction of airflow and the lift force. It is caused by the difference in pressure between the upper and lower surfaces of the aircraft.
  • Moments: Moments are the forces that act around a point. The most common moments measured in wind tunnels are the pitching moment, the yawing moment, and the rolling moment.
  • Stability and control: Tests conducted to measure the stability and controllability of an aircraft are commonly using force measurement solutions for aircraft design changes or integrating new parts into an existing model.
  • Performance: Particularly important with new designs, engineers use these tests to measure the simulated flight performance under maximum speed, range and fuel efficiency.

The specific tests that are conducted in a wind tunnel depend on the project requirements.

Multi-Axis Sensors for Wind Tunnel Testing Applications

In measuring the forces of a wind tunnel test, multi-axis sensors offer the perfect solution for collecting as much data as possible across every axis, giving the engineer a more complete picture on the aerodynamics of the plane. In fact, Interface has supplied multi-axis load cells for use in several wind tunnel testing applications, for OEMs, testing facilities and part makers.

We offer a variety of multi-axis options including 2, 3 and 6-axis standard and high-capacity configurations depending on testing and data requirements of the user. These sensors can precisely measure the applied force from one direction with little or no crosstalk from the force or moment. Interface products provide excellent performance and accuracy in force and torque measurement.

To match the demands of the volumes of data available using multi-axis sensors in wind tunnel testing, Interface often provides several data acquisition instrumentation solution along with our BlueDAQ software.

Wind Tunnel Test Application

A major aerospace company was developing a new airplane and needed to test their scaled model for aerodynamics in a wind tunnel, by measuring loads created by lift and drag. Interface Model 6A154 6-Axis Load Cell was mounted in the floor of the wind tunnel and connected to the scaled model by a stalk. The wind tunnel blew air over the scaled model creating lift and drag, which was measured and compared to the theoretical airplane models. The output of the 6-axis sensor was connected to the BX8-AS Interface BlueDAQ Series Data Acquisition System, which was connected via USB cable to a computer. Using this solution, the company was able to analyze the collected data and made the necessary adjustments in their design to improve the aerodynamics of their theoretical airplane models.

Interface supports wind tunnel testing and all uses of force measurement in the advancements in aeropspace.

Wind tunnel testing is critical to the aircraft industry, as well as other industries like automotive and space. Interface has been providing multi-axis sensors and strain gage load cells to industry leaders and wind tunnel operators. We understand the unique needs of this type of testing and the instrumentation options that work best with our high-accuracy sensors. We also can work to provide custom solutions, load cells for use in extreme environmental conditions. Contact us to get the right solution for your specific testing program.

Additional Resources

Aircraft Wing Fatigue App Note

Airplane Jacking System

Interface Airplane Static Testing Case Study

Taking Flight with Interface Solutions for Aircraft Testing

Aircraft Yoke Torque Measurement

Aircraft Screwdriver Fastening Control App Note

Interface’s Crucial Role in Vehicle and Urban Mobility Markets

Rigging Engineers Choose Interface Measurement Solutions

 

Interface Solutions for Robotics and Industrial Automation

As the manufacturing world continues to push towards the 4.0 Industrial Revolution, critical technology is necessary to ensure facilities are running as efficiently as possible. With advancements toward fully or semi-autonomous factories and robotics, manufacturers need to have total trust in their hardware and software to perform with precision in the assigned tasks. This requires collecting accurate and real-time data to constantly monitor every aspect of the facility’s technology and production.

In the development of robotics used in industrial automation, our Interface Multi-Axis Sensors are often used to test the multi-directional movement and force of robotics arms. Whether it’s a fully automated or semi-automated robotic system, manufacturers need to be able to ensure the complex movements and actions of the robotics arm are optimized to take on very precise jobs. These types of robotics are often used for projects that are too precise for the human hand.

Industrial automation and robotics are creating a more efficient manufacturing process, which will help to churn products out more quickly and lower costs. However, to optimize these processes, it’s critical that we trust the hardware to operate autonomously and that we have systems in-place to identify malfunctions quickly.

Interface plays a critical role in robotics and industrial automation by providing our customers with highly accurate load cells and torque transducers to measure and collect data on the force and torque that these machines are exerting. Interface force measurement solutions and products are involved in the testing of the machines before they hit the production line, and in some cases, our products are also installed directly on the machine to allow users to monitor the force in real-time.

One industry that has a high demand for our products is the consumer packaging industry. Many of the processes involved in the production line of a consumer packaging plant have utilized automation for a long time.

For instance, beverage companies that sell bottles of water or soda utilize machines that cap the product all day long. Hundreds of thousands of bottles go through the capping process on the production line daily. If there are any issues with the torque applied in the capping process, the beverage company could see heavy losses because the bottle could be damaged from over torquing the cap, or the beverage could leak during the shipping process if the caps are under torqued. To avoid these loses, the machines are optimized using a torque transducer.

Torque transducers provide data during the testing process to help the machine manufacturer get the force exactly right for the capping process. The torque transducer can also stay installed on the machine so that the beverage company can continuously monitor the torque of the machine and stop production before damages occur if there is an issue.

Interface offers nearly 50 types of reaction (static) torque transducers and rotary (dynamic) torque transducers. All of our torque transducers are precision-machined and use our proprietary torque sensors for the most accurate data possible.

Another common automation use for force and torque measurement products is in the automotive industry. Automation in this industry has been used for some time increase production of cars.

Two examples of how Interface load cells and torque transducers play a role in the automobile production line is with seat durability testing and bolt fastening.

For seat testing, we had a customer use an Interface Multi-Axis Model 6A68C 6-Axis Load Cell to identify previously unknown bending forcing that could negatively influence their testing process. This allowed the customer to redesign their testing fixture to eliminate the bending moment and more accurately perform the durability testing.

For bolt fastening, we installed an Interface Model LWCF Clamping Force Load Washers along with Interface Instrumentation to monitor the force being applied during bolt tightening. This helped the customer avoid over tightening bolts, which could damage the product in the process.

For a more in-depth overview of both applications, please check out our application notes:

Force measurement products are a critical technology in the testing and monitoring of automation equipment. To learn more about the various products and instrumentation Interface supplies to facilitate industrial automation and support advancements in robotics, contact our applications experts here.  We also have a number of application notes focused on industrial automation here.

Contributor: Ken Bishop, Sr Sales Director, Custom Solutions and Services

 

The Future of Automotive is Electric

Interface has been a longtime provider of force measurement solutions that help engineers develop the technology of tomorrow. One of our main areas of expertise during our 50 plus years in business has been in solutions for the automotive industry.

Interface has helped to revolutionize design and efficiency in this industry using our high accuracy test and measurement solutions. With the increased need for sustainable electric vehicles, we have set our sights on advancing this high-growth area in automotive.

“Less than 5 percent of vehicles sold in 2016 were equipped with EV power trains. Major OEMs have announced that they’re aiming to bring that number above 50 percent by 2021.” McKinsey Quarterly, February 2019

Electric vehicle design and manufacturing requires a precise level of accuracy in order to improve energy efficiency, minimize weight and maximize vehicle range. Battery technology has only come so far; therefore, maximizing power output is the key to improving vehicle design. To achieve this, test and measurement solutions need to be as accurate as possible.

Interface provides high accuracy torque transducers, load cells, load washers and more for two areas of electric vehicle testing: laboratory testing to optimize system performance and production testing to ensure product quality.

Interface’s Role in Vehicle Testing

Laboratory Testing

In laboratory testing, Interface force and torque measurement products are used to achieve high-efficiency in component and system designs. While electric vehicle designs are already very efficient, minimal design adjustments can make a difference to increase total range from a single charge. Making small incremental changes in efficiency, therefore, requires very accurate measurement capability.

Applications of our products in the laboratory environment include maximizing the system performance of electric vehicle drivetrain components, such as motors and gearboxes. As well as performance in auxiliary systems, such as air conditioning compressors and motors, power steering motors, and even brake systems. Accurately measuring the force of dynamic systems like suspension components allow the designer to minimize weight to improve overall vehicle range and performance.

Production Testing

Once the components are moved into the vehicle production phase, Interface solutions are used to ensure the product has been built per the design.  Our products can be used to measure the steady state, as well as the dynamic performance of components and systems.  Using measurement systems they can trust gives customers the confidence that the components and systems meet the performance and dependability expected for the vehicle design.

The key to electric vehicle design is balancing the relationship between efficiency, performance, and cost.  The further we can make electric vehicles go on a single charge, the more attractive these vehicles become for mass markets.

Optimized efficiency requires the most accurate measurements available to our customers and this is where Interface excels. Jake Shaffer, Senior Product Manager

In October 2018, Interface released AxialTQ, specifically designed to help in the transforming vehicle market, including electric and autonomous vehicles. You can read about AxialTQ and view this revolutionary next-generation torque measurement system in action here:

If you are interested in scheduling a demonstration of the product or inquiring about Interface’s precision solutions like AxialTQ that we are providing for force measurement testing of electric vehicles, contact us today.

Contributor:  Jake Shaffer, Senior Product Manager at Interface