Posts

Exploring Capabilities of New Products Webinar Recap

Interface’s latest ForceLeaders webinar, Exploring Capabilities of New Measurement Products, provides an overview of 20 new products with details on specifications, features, and sample applications. The recorded event introduces several new measurement products across various categories, including load cells, torque transducers, multi-axis sensors, instrumentation, accessories, and systems.

Brian Peters, VP of Global Sales at Interface, and Ken Bishop, Senior Director of Custom Solutions, detailed the various product categories and provided essential testing tips to consider for each product. They highlighted capabilities, different use cases, and applications for each product.

Interface’s expanding catalog has over 40,000 SKUs across load cells, torque, instrumentation, calibration systems, and accessories. New products are continuously added, driven by customer needs and industry trends like digitalization, complete systems, multi-axis sensors, submersibles, and wireless connectivity. The following is a recap of some of the products detailed during this comprehensive review.

New Load Cell Models

Ken introduced several new load cell models like the stainless steel ITCA series, which are available with IP67 protection and have capacities ranging from 1 to 150 metric tons (MT) (2.2K to 330.6K lbf). Typical applications are structural testing, jack load and cable tension monitoring, material test machine feedback, and press load monitoring. The ICPA compression model ranges from 2 to 1000 MT (4.4K to 2204K lbf) in a smaller package with optional dome caps and mounting bases. The IO link-enabled 1200 LowProfile Load Cell models for optimizing machine integration and process controls are ideal for the growing digital network environments. Additional products detailed in this section include the A4200 and A4600 WeighCheck™ Load Cells, the new SSLP Stainless Steel Low Profile Universal Load Cell, and our pillow block load cells PBLC1 Pillow Block Load Bearing Load CellPBLC2 Pillow Block Load Bearing Load Cell and PBLC3 Pillow Block Load Bearing Load Cell.

Additions to ATEX Load Cell Line

Two new ATEX-approved load cells are reviewed during the event, including a rod-end style 3450 series and a 3411 Intrinsically Safe Compression-Only LowProfile® Load Cell with an internally amplified 4-20 mA output, loop-powered. Appropriate hazardous environment classifications must be reviewed carefully for proper installation.

New Torque Transducers

During the webinar, Brian introduced the lower-cost T18 rotary torque sensor. This valuable transducer is contactless and suits various test stands without needing separate encoders. It’s a great sensor for testing anything that spins. The TSCF C-Face Flange Torque Transducer wired and non-rotating model allows torque and pass-through mounting on standard C-face motor frames for conveyors, pumps, and other systems. It is available in capacities from 288.5 lbf-in to 885 lbf-in (10 Nm to 100 Nm).

Multi-Axis Sensors

New multi-axis sensors, like the 2-axis AT-104, are valuable for combined reaction torque and axial force cable testing. Customers use this for low-range combined force and torque testing, off-axis friction characterization, and articulating component testing. The AT-105 is available in capacities from 100/2, 250/5, & 500/5 N/Nm (22.5/17.7, 56.2/44.3, & 112.4/44.3 lbf/lbf-in). It measures torque, speed, and force for bearing tests. A new 3-axis load cell, the 3AR Series Round 3-Axis Load Cells, has a high Z-axis capacity that matches the BX8 data logger well. The 6-axis 6ADF series incorporates a DIN mounting flange for robot arm integration.

Load Pins, Shackles and Tension Links

Interface’s expanded line of load pins, shackles, and tension links offers a range of standard and custom solutions with integrated wireless options. The new ILMP Standard Stainless Steel Load Load Pin is a great standard load pin, available from 1.1K lbf (500 kgs) to 3,307K lbf (1500 MT). They work well for lifting, rigging, and inline tension applications. Load pins can be fully customized to fit unique mounting requirements with options for redundant bridges or special connectors.

New Instrumentation

A range of new instrumentation is covered, like the multi-channel 9325 indicator with 2400 Hz sampling, software, and TEDS support. The battery-powered 4850 replaces a previous model for outdoor weighing applications. The multi-function JB1100 junction box sums 4 load cell channels and options for CAN bus, Bluetooth, and analog outputs. The compact IF500 Load Cell Simulator generates precision load cell simulation signals for field use. And the 9840C TEDS Read/Write Intelligent Indicator has coefficients for use with up to 20 load cells. Additional instrumentation highlighted during the technical seminar include the BSC1-HD Single Channel PC Interface Module with Analog Output, the BSC4D-BT Portable 4-channel Bluetooth Data Logger, and the various models of INF4 Two, Three, and Four Sensor Weight Transmitter and Indicator and INF1 Single Sensor Weight Transmitter and Indicator.

Accessories and System Offerings

Interface provides diverse accessories like bases, couplings and enclosures tailored to load cells and torque sensors. We also offer integrated systems that include sensors, data acquisition, software, displays and reporting for wireless devices, multi-axis sensors, torque testing, simulation, instrumentation calibration, and other applications. You can see the options covered in our Data AQ Pack Brochure. Customization services can modify standard products or build complete OEM solutions to customer requirements. Consider customized system development services from Interface for fully integrated deployments. It saves time and money.

The webinar concluded with a checklist of starter questions for planning testing projects covering the goals, measurements, cycles, environments, data usage, installation, connections, storage, and reporting requirements.

  • What are you measuring?
  • What are the number of cycles required in your test plan?
  • What is the environment for your project?
  • How will you use the measurement data?
  • What are the requirements for mounting and installation?
  • How will you be connecting your devices to instrumentation?
  • Where are you storing your data?
  • Will you need software to analyze your results?

Research Interface’s catalog of load cells, torque sensors, instrumentation, and accessories for models potentially fitting my application requirements. Be sure to consult Interface application engineers on recommendations for complete measurement solutions optimized for your specific use cases.

WATCH THE WEBINAR

Interface Cable Assemblies 101

Force measurement cables and connectors are far more integral than a cable. Unlike cables for many electronics, they are not just power or data transfer sources. Instead, cables and connectors play a significant role in the total force measurement systems.

Specific cables and mating connectors are used for different applications, environments, frequency and power requirements, and paired measurement devices. This includes sensor considerations as well as instrumentation.

What are cable assemblies? 

A cable assembly for a load cell essentially acts as the lifeline between the load cell and the analog output instrumentation, transmitting the electrical signals generated by the load cell to be interpreted and measured. It’s not just a simple cable but a carefully constructed unit designed to maintain signal integrity and protect against external interference.

Interface cable assemblies are used for connecting transducers to instrumentation. Our cable assemblies are designed for easy integration with Interface measurement devices and instrumentation. Interface cables maintain the specification of the product. We provide standard cable assemblies and custom lengths, depending on your application. Shielded cables are available from Interface. Our line of cables is part of the diverse line of Interface Accessories.

Cable Assembly Basics

  • Shielding protects the signals from noise and ensures accurate readings.
  • Twisted pairs are individual conductor pairs twisted together to reduce noise interference and crosstalk between signals.
  • The material and gauge are chosen to minimize voltage drop and signal loss over the cable length.
  • Durable jackets protect the internal components from physical damage and environmental factors like moisture and abrasion.
  • Mating connectors should be compatible with the load cell and instrumentation, often sealed to prevent moisture ingress.
  • Strain relief prevents damage to the cable near the connectors from pulling or moving.
  • Proper shield grounding is crucial for effective noise mitigation.

In essence, a load cell cable assembly is engineered to ensure the fidelity and accuracy of the load cell’s signal, ultimately contributing to reliable and precise measurements in your system. Remember, the specific design and features of the cable assembly can vary depending on the type of load cell, application requirements, and environmental considerations. C

Essential Tips for Selecting a Cable

  • Length: One of the most critical considerations when selecting the suitable cable for your application is cable length. Minimize cable length to reduce signal loss and maintain accuracy. Consider the extra length needed for routing flexibility; however, it is not recommended to use extra long cables if it is not necessary.
  • Temperature range: Ensure the cable is rated for your environment’s expected operating temperature range.
  • Moisture resistance: Consider waterproof cables for outdoor or wet environments to prevent corrosion and signal degradation.
  • Flexibility: Choose a cable with appropriate flexibility for your installation. Stiffer cables are more durable but more challenging to maneuver in tight spaces.
  • Shielded or unshielded? Choose shielded cables in environments with electrical noise from motors, power lines, or radio frequencies. Unshielded cables are sufficient for cleaner environments.
  • Twisted pair or single conductor? Use twisted pairs for improved noise rejection, especially in long cable runs. Single conductors are cheaper but more susceptible to interference.
  • Number of conductors: Match the number of conductors to your load cell configuration. 4-wire for basic setups, 6-wire for advanced measurements. Consult with your application engineer to define your requirements.

TIP: For constant voltage excitation, two effects of significance can affect accuracy. An effect on the sensitivity due to voltage drops over the cable length.  An effect on the thermal span characteristics of the load cell due to the change of cable resistance with temperature.

Cable Length Effects

If the load cell is purchased with a cable of any length, the sensitivity is determined with the installed cable in calibration, and this is not a problem. For load cells with connectors, or if a cable is added that is not designed for the exact use, there will be a loss of sensitivity of approximately 0.37% per 10 feet of 28 gauge cable and 0.09% per 10 feet of 22 gauge cable. This error can be eliminated if a six-wire cable is run to the end of the load cell cable or connector and used with an indicator with sense lead capability.

Temperature Effects

Since cable resistance is a function of temperature, the cable response to temperature change affects the thermal span characteristics of the load cell cable system. For 6-wire systems, this effect is eliminated. For 4-wire cables, the effect is compensated for in the standard cable lengths offered with the load cells if the load cell and cable are at the same temperature simultaneously. For non-standard cable lengths, there will be an effect on thermal span performance. The impact of adding 10 feet of 28 gauge cable is to cause a decrease in sensitivity with a temperature equal to 0.0008%/°F. For an added 10 feet of 22 gauge cable, the effect is to decrease the sensitivity by 0.0002%/°F. In some cases, it is tolerable to degrade performance since Interface standard specification is extremely tight. However, this can be a significant factor for long cable runs or high-accuracy applications. The best way to eliminate the problem is to run six wires to the end of the standard cable length and sense the excitation voltage.

Wireless Versus Cable Key Considerations

  • Type of Sensor – is there a wireless option?
  • Type of Sensor Output
  • Communication Protocol
  • Accuracy Impact 
  • Types of Errors Subject to Wireless Devices
  • Servicing Limitations with Power (Battery)
  • Line of Sight for Wireless
  • Data Rate Can Decline with Wireless Transmissions
  • Synchronization of Data

With a growing demand for wireless solutions, it is crucial to consider the results and environment before cutting the cable.

The application is vital in your cable evaluation. With a growing demand for wireless solutions, it is essential to consider the results and environment before cutting the cable. With an increasing demand for wireless solutions, it is vital to consider the results and environment before cutting the cable. Not all cables are the same. We can look at the oil and gas industry as an example of specific cable considerations. We have many oil and gas industry customers who need force measurement solutions to deal with the heat and pressure in a downhole application. The cables and connectors for this project often need custom braiding and coating to ensure the wiring won’t melt or corrode in this environment. We also have submersible solutions in which the connection between the submersible load cell and the connector must be sealed tightly to prevent water damage to the components.

At Interface, our accessories use only the highest-quality components and materials. Our engineers will also work with you to find the accessories that fit your needs. We can work with you to create a custom solution if we don’t offer the necessary connectors and cables in-house. We also provide various options depending on the data requirements, whether permanent monitoring or portable solutions, and different cables based on data type for the type of instrument.

To learn more about our cables, visit our accessories.

ADDITIONAL RESOURCES

Understanding Cable Length and Temperature Effects

Force Measurement Accessories 101

Accessories-Brochure-2

Exploring New Measurement Products Webinar

The Interface Exploring Capabilities of New Measurement Products Webinar details new products, including sensors, instrumentation, and accessories. Our experts will cover dozens of new additions to the extensive 40,000-plus product catalog of force measurement solutions. Interface engineers highlight product features, capacities, use cases, and technical tips in the fast-paced new technical online seminar.

Interface 2023 Top Products and Trends

As engineers, we demand complex data and proven performance, especially regarding the tools we trust with our test and measurement projects. That’s why Interface crunched the numbers on our extensive 35,000+ product catalog, analyzing real-world usage and online preferences to reveal the 2023 top force measurement products.

Whether you’re tackling demanding aerospace wind tunnel tests, optimizing robotic grips for industrial automation use in the factory, or innovating in medical device design that will save lives, there are options for precision measurement. This list provides a data-driven roadmap to the Interface products fellow measurement device seekers created through their product reviews and acquisition. We highlighted some of these trends and use cases in our recent post: Top 10 Trends in Test and Measurement.

Let’s delve into the real-world data and discover the Interface measurement tools that testing professionals, technicians, buyers, and engineers like you relied on in 2023.

2023 MOST VIEWED PRODUCT CATEGORIES

2023 MOST VIEWED INTERFACE PRODUCTS

2023 MOST VIEWED PRODUCT FEATURES

The most viewed products provide Interface product design and planning teams with insights about future projects. Whether you are designing a new consumer product that provides IoT sensing capabilities with an embedded Mini Load Cell or updating your test lab with multi-axis sensors, Interface learns from your interactions.

So, how did all of this translate to products we built this year? Interface customers selected these most popular load cells, torque transducers, and instrumentation for various applications and use cases, including OEM solutions.

2023 MOST POPULAR INTERFACE PRODUCTS

Interface force measurement solutions proved a cornerstone of success, aiding in developing and testing countless innovative products. But with thousands of options in our catalog, pinpointing the most impactful measurement tools can be daunting. We can relate, so we designed a series of Interface Guides to help you navigate options based on your technical requirements and product specifications. Use these guides to start your research, then engage with our experienced application engineers to refine your options and get the right product for your specific needs.

NEW INTERFACE GUIDES HELP IN SELECTING THE RIGHT PRODUCT

Load Cell Selection Guide

Torque Transducer Selection Guide

Instrumentation Selection Guide

Data AQ Pack Guide

Multi-Axis Sensor Selection Guide

Lifting Solutions Guide

Weighing Solutions Guide

We are ready to help dissect the specific features, capacities, and application requirements with you to conquer your force measurement complexities confidently. We look forward to supplying you with sensor technologies in 2024.

Load Cell Simulator 101

A load cell simulator is a device that mimics the electrical signal of a load cell. This allows technicians to test and calibrate measurement systems without applying physical force or weight to the load.

By generating a range of input signals using a load cell simulator, technicians can assess the instrument’s linearity, sensitivity, and accuracy, ensuring it meets the required specifications.

The two most common uses for load cell simulators are troubleshooting and calibration. Load cell simulators can effectively troubleshoot force measurement systems, detecting and isolating faults or malfunctions. By simulating various load conditions and injecting fault conditions, technicians can pinpoint the source of the problem, such as a broken wire or a faulty load cell.

Load cell simulators are essential for calibrating force measurement devices, ensuring they accurately translate applied force into a measurable electrical signal. By generating a controlled force signal, technicians can compare the displayed value to the known input signal, identifying discrepancies and adjusting the device accordingly.

Interface load cell simulators are part of our accessories product line. They are an essential accessory and valuable investment for any testing lab or research facility frequently using load cells. These simulators can help to improve safety, reduce downtime, improve accuracy, lower costs, and increase convenience.

Why Use a Load Cell Simulator?

  • Testing and monitoring force measurement systems: Load cell simulators can test instrumentation performance used in force measurement systems, such as hydraulic presses, assembly machines, and material testing machines. By simulating forces that the system would typically encounter, the simulator can help identify potential problems with the instrumentation, ensuring that the system operates safely and efficiently.
  • Verifying proper indicator setup: Load cell simulators can be used to verify that an indicator is configured correctly for the type of load cells being used. This includes checking the scaling and the instrument’s linearity.
  • Cable checks: One of the first troubleshooting tips for any load cell application is to check the cables and connectors. A load cell simulator is valuable for checking cables.
  • Scaling: Load cell simulators are crucial for scaling force measurement devices, enabling precise calibration, troubleshooting, and testing. They play a vital role in ensuring the accuracy and reliability of force measurements across various industries.
  • Calibrating scale indicators: Load cell simulators can generate a precise mV/V signal corresponding to a specific weight. This allows technicians to calibrate scale indicators to ensure that they are displaying accurate weight readings.
  • Application evaluation: Load cell simulators can be used to develop and troubleshoot force-related applications, such as medical devices, prosthetics, and exercise equipment. By simulating forces that users would typically apply, the simulator can help to ensure that the application is safe, effective, and operational.
  • Research and product development: Load cell simulators can be used to research new force measurement applications.
  • Technician training: Load cell simulators can educate and train technicians on the proper use and calibration of load cells.

Interface Load Cell Simulators

CX SERIES PRECISION MV/V TRANSFER STANDARD LOAD CELL SIMULATOR 

CX SERIES PRECISION mV/V TRANSFER STANDARDModel CX Series Precision mV/V Transfer Standard is the market’s most accurate load cell simulator. This NIST Traceable product is commonly used to calibrate and check instruments in accredited labs.

  • Most accurate load cell simulator
  • Special low thermal EMF construction
  • Each unit is individually calibrated, aged, and recalibrated
  • Strong, rugged design
  • Instrument substitution testing

In the series, models CX-0202, CX-0610, CX-0440, CS-0330, and CX-0220 are used to set up and check the Gold Standard® System Hardware. CX-0440, CX-0330, and CX-0220 are single-step mV/V transfer standards providing precision outputs of ±4, ±3, and ±2 mV/V respectively. CX-0610 is a multi-step unit that allows the user to go from -6 mV/V to +6 mV/V in 1 mV/V steps. Model CX-0404 is specifically designed for instrument substitution testing as per ASTM E74.

EVALUATOR 3 LOAD CELL SIMULATOR 

Evaluator 3 Load Cell SimulatorThe Evaluator 3 variable range simulator is well suited for basic troubleshooting needs, offering nine fixed intervals from -5 mV/V to +4.5 mV/V.

  • ABS plastic case
  • Weighs less than 1 lb (0.45 kg)
  • Fixed rotary switch, -0.5 mV/V to 4.5 mV/V in 9 steps of 0.5mV/V per step
  • Used in testing and troubleshooting mV/V instrumentation

IF500 LOAD CELL SIMULATOR 

The new model IF500 is a 5V or 10V excitation-only load cell simulator with a state-of-the-art microprocessor-based design. It is a cost-effective simulator with advanced instrumentation capabilities. The instrument excitation supply powers the IF500 and requires no batteries.

  • Set “ANY” mV/V value within ±5mV/V
  • State-of-the-art, microprocessor-based design
  • Sleep mode eliminates digital clock noise
  • Powered by instrument excitation supply… No batteries
  • Buffered Ratiometric output
  • 350-ohm bridge configuration
  • Stores up to 10 settings with sequential recall
  • Digital zero trim and storage
  • Low noise, low quiescent current, low-temperature coefficient, high stability amplifiers
  • Compatible with instruments using 5V or 10V excitation, including Interface’s instrument models 9820, 9840, 9860, 9870, 9890, CSC/CSD, DMA/DMA2, DCA, INF1/INF4, ISG, SGA, and VSC
  • Options include: NIST Traceable Calibration Certificate, Screw Terminal Adapters for the BNC Connectors and Cable Adapters

Application Examples for Load Cell Simulators

Manufacturing: Load cell simulators are essential for calibrating and testing force measurement devices used in manufacturing processes, ensuring accurate force control and product consistency. ADDITIONAL RESOURCE: Manufacturing Solutions.

Food Processing: Load cell simulators are critical in calibrating and troubleshooting force measurement devices, ensuring precise portion control, and maintaining food safety standards.  ADDITIONAL RESOURCE: Force Measurement for Efficiency in Food Processing and Packaging

Construction: Load cell simulators are employed for testing and calibrating force measurement devices used in construction applications, such as crane load monitoring and material testing. ADDITIONAL RESOURCE: Construction Solutions

Medical Devices: Load cell simulators are utilized for calibrating and verifying the accuracy of force measurement devices in medical applications, such as patient weighing scales and rehabilitation equipment. ADDITIONAL RESOURCE: Medical and Healthcare

Interface load cell simulators are indispensable tools for scaling force measurement devices, providing a safe, efficient, and cost-effective means to ensure the accuracy and reliability of force measurements across diverse industries. Their ability to calibrate, troubleshoot, and test force measurement devices contributes to product quality, process control, safety, and regulatory compliance, making them essential for maintaining the integrity of force measurement systems.

Interface Introduces New Torque Coupling Guide

The new Interface Torque Coupling Selection Guide is a valuable tool for determining the correct couplings for your specific transducer and application.

This resourceful guide considers the type of torque sensor you are using, the hub type, the paired sides for connection that is best suited for your test and measurement use case.

Our couplings are durable and made to sustain performance throughout the lifetime of the matching torque transducer’s high accuracy test and measurement conditions. Learn more in our Couplings 101 post.

Interface’s Torque Coupling Selection Guide will help you narrow down your choices and find the coupling that matches your application requirements. Interface Torque Transducer shafts are compatible with either a shrink disk or collar type hub. You have the option to choose from a shrink disk, keyed, keyed large, clamping ring, or a collar hub based on your shaft’s connection requirements. We do offer keyed shaft options for our torque transducers, by request through our custom solutions group.

The types of couplings Interface offers include:

  • Single Flex Floating Mount
  • Double Flex Pedestal Mount

These are offered with the following hub configurations:

  • Shrink Disk – Keyed
  • Shrink Disk – Keyed Large
  • Shrink Disk – Shrink Disk
  • Shrink Disk – Clamping Ring
  • Collar – Collar

Torque transducers require couplings to ensure accuracy and protect your sensor investment. A torque transducer coupling is a specialized coupling that is designed to connect a torque transducer to a rotating shaft and facilitate torque measurement. This ensures that the transducer can measure the torque accurately and reliably, without any damage to the transducer or the shaft. Read more in our post: Torque Transducers and Couplings are the Perfect Pairing.

Additional factors to consider when choosing a coupling:

  • Torque transducer model: Not all couplings are equal. Interface always recommends that the couplings are designed for the specific model to eliminate any concerns with performance and reliability. Go to our torque guide to review available models.
  • Torque range: The coupling must be able to handle the maximum torque that will be applied to it.
  • Speed: The coupling must be able to operate at the desired speed without overheating or causing vibration.
  • Environment: The coupling must be able to withstand the environmental conditions in which it will be used, such as temperature, humidity, and corrosive chemicals.
  • Space constraints: The coupling must be able to fit in the available space.
  • Quality: Interface provides couplings that are made for our specific torque transducers, ensuring they are engineered to the exact specifications of the paired sensor.

When selecting an Interface torque transducer, always request or include the Interface couplings that are designed for that specific transducer model. It is especially important to review the coupling’s features and make sure they are compatible with your transducer. The coupling and transducer are designed to work together, and using the wrong coupling could lead to problems or even damage the transducer.

Without a coupling, the torque transducer cannot be mechanically connected to the rotating shaft or component. As a result, it will not be able to measure the torque being transmitted through the shaft and you lose the ability to correctly monitor and analyze torque.

We always recommend that you connect with Interface’s application engineers if you have questions. Based on experience, they can help you assess your needs and make sure you choose the right coupling accessories.

Interface provides a series of guides to help in selecting the sensor, instrumentation and supporting accessories.  You can find all the online guides here, including the most popular guides:

Learn more about in our Torque Sensor Training: Part 6 Torque Couplings

Understanding Cable Length and Temperature Effects

Interface offers several different accessories, from interconnect cables and mating connectors to base kits and TEDS. Cables and connectors are used to attach the sensor equipment to a multitude of components and systems including data acquisition systems, power amplifiers, test stands and other instruments.

Consideration of the cable and connectivity are important when selecting any transducer. Interface has several standard cable options based on the type of measurement device, the instrumentation, the pinout, type of connector and length required for the testing use case.

Find a range of all standard cable assembly options listed here, such as:

  • Interconnect Cable from Bayonet-Type Load Cell Connector to Pigtails, 10-foot in length
  • Amplified Load Cell Bayonet-Type Connector to Pigtails
  • Screw-type Load Cell (non-TEDS) Connector to Model 9860 Indicator 10-foot in length
  • Interconnect Cable from Model TS-type Torque Transducer to Pigtails, 10-foot in length
  • Interconnect Cable from Pigtails to Pigtails, 10-foot in length
  • Interconnect Cable from TX Torque Transducer 8-pin Connector to Pigtails, 6-meters in length
  • Interconnect Cable from Model WMC/2420/2430 Bayonet-type Load Cell Connector to Pigtails, 10-foot in length

Interface uses the highest grade mating connectors to ensure that the performance of your force and torque solutions are not compromised during use. We offer options for standard connectors based on the receptacle and plug type requirements, as well as custom solutions. Our mating connectors include:

  • Bayonet-Type Mating Connectors
  • Screw-Type Mating Connectors

Cable Length and Temperature Considerations

For high accuracy force measurement, the effects of the cable on the measurement must be considered for any testing program. For constant voltage excitation there are two significant effects:

  • An effect on the sensitivity due to voltage drops over the cable length.
  • An effect on the thermal span characteristics of the load cell due to the change of cable resistance with temperature.

If the Interface load cell is purchased with a cable of any length, the sensitivity is determined with the installed cable in calibration. Always consider your cable options when buying a new sensor.

TIP: For load cells with connectors, or if a cable is added that is not designed for the exact use, there will be a loss of sensitivity of approximately 0.37% per 10 feet of 28 gage cable and 0.09% per 10 feet of 22 gage cable. This error can be eliminated if a six wire cable is run to the end of the load cell cable or connector and used in conjunction with an indicator that has sense lead capability.

Since cable resistance is a function of temperature, the cable response to temperature change affects the thermal span characteristics of the load cell cable system. For 6-wire systems this effect is eliminated and is a non-issue in performance. For 4-wire cables the effect is compensated for in the standard cable lengths offered with the load cells if the load cell and cable are at the same temperature at the same time.

There are cables designed for hot temperature or corrosive environments that can not only withstand those conditions, but also provide accurate data despite environmental challenges.

TIP: For non-standard cable lengths, there will be an effect on thermal span performance. The effect of adding 10 feet of 28 gage cable is to cause a decrease in sensitivity with temperature equal to 0.0008%/°F. For an added 10 feet of 22 gage cable the effect is to decrease sensitivity by 0.0002%/°F. In some cases, it is tolerable to degrade performance since Interface standard specification is extremely tight. However, for long cable runs or high accuracy applications, this can be a significant factor. The best approach to eliminate the problem is to run six wires to the end of the standard cable length and sense the excitation voltage at that point.

Our customers in the oil and gas industry often need force measurement solutions that can perform under extreme heat and pressure, such as in a downhole application. The cables and connectors needed for this type of project often need custom braiding and coating to ensure the wiring will not melt or corrode in this environment. Read more in Interface Pressure Compensated Downhole Load Cell White Paper.

Interface also provides our maritime and off-shore testing customers with submersible solutions in which the connection between the submersible load cell and the connector must be sealed tightly to prevent water damage to the components.

We develop all our products and accessories using only components and materials that are engineered to perform for precision testing applications. Find all the accessories here. Our engineers will also work with your directly to find the accessories that fit your specific needs. If we do not currently offer the necessary connectors and cables in house, we can work with you to create a custom solution. We also provide a variety of options depending on the data requirements, whether it is permanent monitoring, as well as different cables based on instrumentation interconnectivity.

The best option is to always purchase the cable and any mating connector at the time you choose your load cell or torque transducer. This ensures it is calibrated with the cable and performs to the exact specifications as it was designed and guaranteed by Interface.

ADDITIONAL RESOURCES

Demystifying Specifications Webinar

Force Measurement Accessories 101

Accessories

Interface Guides

TEDS 101

Basics on Load Cell Base Kits

Mating Connectors

Interface Load Cell Field Guide

Torque Transducers and Couplings are the Perfect Pairing

Torque transducers require couplings to enhance precision and reliability in performance. The pairing ensures accurate measurements. The coupling enables the torque transducer to precisely measure torque while maintaining a secure mechanical connection to the rotating components. This facilitates data collection, analysis, and control, leading to improved performance, efficiency, and reliability when using a torque transducer in various test and measurement applications.

Couplings are designed to provide a strong and secure connection between the shafts, ensuring efficient torque transmission while minimizing stress and wear on the components. They come in distinct types and designs, each suited for specific applications and operating conditions.

For example, rigid couplings provide a solid and inflexible connection between the shafts, allowing for precise torque transmission but offering little or no flexibility to compensate for misalignments. Whereas flexible couplings are designed to accommodate small misalignments and angular offsets between the shafts. They use flexible discs to provide some degree of flexibility, dampen vibrations, and reduce stress on the connected components.

Interface Torque Transducer Models T2, T3, T4, T5, T6, T7, T8, T11 and T25 offer a range of product-specific coupling options. It is important to note that couplings are not universal, and your best options are always the couplings designed for the specific model, thus the perfect pairing. To demonstrate the range of options, here is a quick list of coupling designs:

  • Floating Mount Keyed Single Flex Couplings
  • Pedestal or Foot Mount Keyed Double Flex Couplings
  • Floating Mount Clamping Ring Single Flex Couplings
  • Pedestal or Foot Mount Clamping Ring Double Flex Couplings
  • Floating Mount Shrink Disk Single Flex Couplings
  • Pedestal or FootMount Shrink Disk Double Flex Couplings
  • Floating Mount Single Flex Couplings
  • Pedestal or Foot Mount Double Flex Couplings

A torque transducer coupling is a specific coupling designed to facilitate the connection and torque measurement between a torque transducer and a rotating shaft, providing accurate and reliable torque data. Whenever you are selecting an Interface torque transducer, be sure to request or add the Interface couplings that are designed for that specific transducer model. It is especially important to review the couplings features that pairs with your specific transducer. They are designed to work together, and you risk any problems or potential transducer failure.

Torque Transducers Require Couplings for Accuracy and to Safeguard Your Investment

Without a coupling, the torque transducer cannot be mechanically connected to the rotating shaft or component. As a result, it will not be able to measure the torque being transmitted through the shaft. This means you will lose the ability to accurately monitor and analyze torque in the system.

Using couplings is a standard requirement when using a torque transducer. They provide the mechanical connection, transmission and reduce misalignments, which all contributes to accurate and reliable torque measurements with torque transducers.

A coupling provides a means of mechanically connecting the torque transducer to the rotating shaft or component from which torque is being measured. It ensures a secure and reliable connection between the transducer and the system under test. In the absence of a coupling, the torque transducer may not be securely attached to the rotating shaft. This can lead to relative movement or slippage between the transducer and the shaft,

The coupling enables the transfer of torque from the rotating shaft to the torque transducer. As the shaft rotates, the torque is transmitted through the coupling to the transducer, which measures and converts it into an electrical signal for further analysis or control.

A coupling helps to compensate for small misalignments between the shaft and the transducer. Without a coupling, any misalignment between the two components can put additional stress on the transducer and the shaft, potentially causing premature wear, increased friction, or even catastrophic failure.

Couplings can also provide vibration damping properties by design, as they absorb or dampen vibrations and shocks that may be present in the system. This helps to protect the torque transducer from excessive mechanical stresses and safeguards torque measurements. Without a proper coupling, the transducer may also be susceptible to excessive vibrations or shocks, increasing the risk of mechanical failure.

Torque Transducer and Couplings Applications

If you are looking at a torque transducer use case, assume there are couplings that are part of the application. To point out common examples of testing programs that utilize couplings with high-performance torque transducers, the first place to start is in the automotive industry. In the automotive industry, high-performance torque transducers with couplings are used for various testing purposes. For example, during the development and testing of engines, transmissions, and drivetrain components, torque transducers coupled with the rotating shafts allow for precise measurement of torque and power output. Torque measurement data is crucial for performance analysis, efficiency optimization, and durability testing.

Torque transducers with couplings are extensively utilized in the engineering, testing, and use of industrial automation, machinery and equipment. Manufacturing processes that involve rotating components, such as pumps, compressors, and turbines, are using torque transducers coupled with the shafts to provide measurements of torque. Accuracy in data helps monitor the efficiency of the machinery, detect deviations, and ensure standard operation. All of this contributes to preventative maintenance.

There are many R&D use cases where torque transducers with couplings are required. We often see torque transducers and couplings used in material testing and structural analysis. In the renewable energy sector, wind turbines and hydroelectric generators use torque transducers and couplings.

These examples the coupling enables the torque transducer to accurately measure torque while maintaining a secure mechanical connection to the rotating components.  To explore more about couplings, be sure to tune into our recorded torque transducers webinar.


Additional Resources

Couplings 101

Torque Transducer Selection Guide

Miniature Torque Transducers 101

Choosing the Right Torque Transducer

Fuel Pump Optimization & Rotary Torque

A Comparison of Torque Measurement Systems White Paper

Rover Wheel Torque Monitoring

Torque Measurement Primer

Shunt Calibration Resistors 101

Shunt calibration is a process of calibrating a measurement instrument using a shunt calibration resistor. The shunt calibration resistor is connected in parallel with the measurement instrument to provide a known resistance value, which is used to calculate the instrument’s accuracy.

In shunt calibration, a known current is passed through the shunt calibration (cal) resistor, which generates a known voltage drop across the resistor. This voltage drop is measured using the measurement instrument being calibrated, and the instrument’s accuracy is calculated based on the known resistance value of the shunt calibration resistor and the measured voltage drop. They create a simulation of load and verify the health of the sensor. Commonly, they are used to scale instruments.

The accuracy of the measurement instrument can be calculated by knowing the shunt resistor’s precision level and applying Ohm’s Law, which states that the current passing through a resistor is proportional to the voltage drop across it and inversely proportional to its resistance value.

Shunt calibration can be used to calibrate force measurement devices, including load cells. Interface provides shunt calibration resistors in our accessories line as “loose” resistors. They are also available with engineered to order requests for designs into cables, connectors and even within the load cell.

Shunt calibration is an important process for ensuring accurate and reliable measurements in various industrial, commercial, and scientific applications. It allows measurement instruments to be calibrated quickly and cost-effectively, and it improves the accuracy and reliability of the measurement data.

What is a shunt calibration resistor?

A shunt calibration resistor is a resistor that is connected in parallel with a measurement instrument to provide a known resistance value. The purpose of the shunt calibration resistor is to calibrate the instrument to accurately measure the current passing through it. Shunt calibration resistors are often used with load cells to improve the accuracy and reliability of their measurements.

How are shunt calibration resistors used with load cells?

Load cells typically generate a small electrical signal in response to applied force or weight. This signal is amplified and processed by a signal conditioning circuit before a data acquisition system or controller uses it. The signal conditioning circuit can utilize an internal shunt calibration resistor on the instrumentation side, or activate a resistor located upstream in the system.

Shunt calibration resistors located either in the sensor, cable, or instrument will be switched into the circuit during the shunt calibration process, shunting and diverting current in the process. This shunting effect unbalances the Wheatstone bridge, simulating loaded output from the sensor. Because the resistance value is known, sensor span output and thus instrument scaling can be accurately verified. This electrical simulated signal negates the need for physical force or torque calibration of the system.

The shunt calibration resistor provides a known resistance value, which is used to verify the health and output of the load cell, ensuring accurate system measurement of the applied force or weight. The resistor diverts a small portion of the load cell’s excitation current. The value of the shunt calibration resistor is carefully selected based on the load cell’s characteristics and the desired measurement accuracy.

Shunt calibration uses the shunt resistor to force a load cell bridge to provide a fake signal output. It allows one to check for sensor health and whether the signal behavior has deviated from an original calibration certification with initial shunt output data.

This forced signal output allows for the attached instrument to be scaled. This could be setting signal conditioner scaling:  When the load cell reaches max calibrated force, is the mV/V input properly scaled for the exact 5V, 10V or 20mA conditioner output? The other setting option is displayed units of measurement on a display: Is the load cell’s calibrated 3.999mV/V output at 100 lbs displaying 100 lbs on the display?

Shunt resistors are sized by resistance value to provide approximately two-thirds or three-quarters full scale output signal. Having this recorded value on the calibration certification the instruments can be scaled as necessary for full scale, and future shunt checks can ensure nothing is changing with the health of the circuit.

Interface Shunt Calibration Resistors – RCAL Resistors

Interface shunt calibration resistors, known as RCAL Resistors, are an accessory product. They are made from the highest components and processes to ensure the specifications for your Interface products perform to meet their published specifications. Available RCAL Models include RS-100-30K, RS-100-40K, RS-100-60K, and RS-100-120K are available.

Interface RCAL Resistors are high precision components and provide an effective, method for checking the calibration of a load cell system in the field or when a means of applying actual forces is unavailable.

  • Designed to work with Interface products.
  • Made with the highest quality components.
  • Created to maintain the specification of the product.
  • Precision wire-wound
  • 5 ppm/°C, 0.01%

U.S. dimensions and capacities are provided for conversion only. Standard product has metric capacities and dimensions. U.S. capacities available upon special request and at an additional cost.

What are the benefits of using shunt calibration resistors?

There are several benefits of using shunt calibration resistors in measurement applications:

  • Calibration: Shunt calibration resistors can be used to scale measurement instruments, ensuring that they provide accurate calibrated unit readings. Shunt calibration can often substitute the need for physical force or torque system calibration
  • Convenience: Shunt calibration can provide a quick and easy system health check either before or immediately after a test. Confirming stable and consistent shunt readings can ensure data integrity in between regular scheduled physical calibration intervals.
  • Cost-effective: Using a shunt calibration resistor is an inexpensive one time investment vs time and cost associated with pre or posttest physical calibrations. This brings the freedom for frequent and quick system calibration checks with minimal equipment down time.
  • Flexibility: Shunt calibration resistors can be used with a wide range of measurement instruments, allowing for greater flexibility in measurement applications. Additionally, many instruments allow shunt resistors to be interchangeable for support of varying sensor outputs.

Overall, shunt calibration resistors are a practical and convenient alternative to physical system calibrations. Shunt calibration resistors can be packaged into all Interface load cells with support across most of the available instrumentation as well. Frequent system health and signal stability checks are vital to ensuring consistent integrity with test data and shunt calibration resistors bring such empowerment for extraordinarily little initial investment.

Contributor: Brian Peters

Additional Resources

Metrologists and Calibration Technicians 101

System Level Calibration Validates Accuracy and Performance

Shunt Calibration for Dummies – Reference Guide

Shunt Calibration 101

Regular Calibration Service Maintains Load Cell Accuracy

Top Five Reasons Why Calibration Matters