Posts

Interface Supplies Agriculture Industry with Sensor Technologies

The global agribusiness industry is estimated to be $5 trillion and growing rapidly. The Association of Equipment Manufacturers (AEM) notes that agriculture innovators and product development are contributions to quality of life, economic growth, employment, and environment in a big way. Interface is proud to be a supplier of sensor solutions, from load cells to instrumentation, to the agriculture industry.

Any time you are manufacturing tractors, self-propelled harvesting combines, robotics, silo structures, monitoring technologies and other equipment used for crop production and farm animal management, test and measurement has an important part. T&M is essential in validating performance, functionality, and safety. Interface load cells, torque transducers, multi-axis sensors, instrumentation and data acquisition systems are essential for these different kinds of agricultural applications. These products can be paired together to ensure efficiency, sustainability, and proper production planning. Interface sensors can also regulate through harsh weather conditions often experienced on a farm such has rain, humidity and unbearable temperatures, both low and high, while still maintaining a high testing and measurement performance.

In the case study Interface Solutions Used in Growing Agriculture Innovation, we outline how our sensors and data acquisition devices are designed to provide engineers with high-quality force and torque data to monitor and confirm the design and in-action processes of a wide variety of equipment. Interface products are ideal for manufacturers that develop agricultural machinery. Load cells and torque transducers, as well as DAQ and instrumentation solutions provide accurate force and torque data to monitor and confirm the design and in-action processes. This applies to a wide variety of agriculture equipment used to push, pull, lift, contain, and move things ranging from seed to cattle. To perfect these inventions and ensure safety, Interface sensors play a pivotal role.

If you would like to dig into a series of use cases that for the agriculture industry, we’ve included links below:

Faces of Interface Featuring Mark Bliss

For our newest edition of Faces of Interface, we had the opportunity to talk with Mark Bliss, senior application engineer, with our manufacturer’s representative, Minnesota Measurement Engineering.

Minnesota Measurement Engineering (MNME) works across a wide variety of industries throughout Minnesota, North Dakota, South Dakota, Western Wisconsin, and Iowa. They help engineers specify sensing, testing, and measuring products that best fit their needs and the needs of their application. In addition, MNME builds and integrates custom test and measurement systems for customers. We are thrilled to have them as a partner and are proud to feature Mark Bliss and the team at MNME.

Mark is proud to be a career learner, especially as it pertains to science and engineering. Mark’s mother was a librarian, and his father was involved in science. His upbringing led both himself and his brother to pursue a career in engineering.

Mark attended the University of Minnesota, where he received a Bachelor of Science in Mechanical Engineering. During his time in school, he also engaged in several high-profile internships with Thermo King Corporation, Ecolab, Inc., and Honeywell. This experience helped him get hired at Boeing shortly after college.

Mark spent a year and two months with Boeing as a mechanical design engineer before he and his wife decided they wanted to return to Minnesota. With the move, Mark joined MTS Systems Corporation where he served as a mechanical engineer and program leader within the Systems Product Development R&D Group.

Mark also started his own engineering consulting services company 2RM, LLC. Mark’s passion for engineering pushed him to moonlight as a consultant for everything from OEMs to startups. Some of the work he conducted included custom machine design, structural finite element analysis and optimization, reverse engineering, prototyping, component and material sourcing, in addition to boosting his skill set in sales, accounting, marketing and customer service.

In 2015, Mark was looking for a new challenge and saw an opportunity to take on a sales role at MNME while still applying his passion for engineering through the custom systems side of the business.

As a Senior Application Engineer at MNME, Mark is responsible for assisting customers with force, torque, pressure, acceleration, position, flow, vibration, data acquisition, and custom solutions for R&D, industrial, and OEM applications. His role includes supporting customer product information and quoting requests, visiting customers to understand and identify needs, following up on leads and principal contact reports, identifying sales opportunities and maintaining relationships with customers of all sizes.

Mark mentions that the best part about his position with MNME is the fact that he gets to see and work with new technology every day. Some days he might be working with a medical device manufacturer and the next day he is selling solutions for an autonomous vehicle. The diversity of his customers keeps him on his toes and ensures he’s always learning something new.

He also loves the fact that he gets to continue getting hands on with technology. One of the unique capabilities of MNME is the fact that they act as both a manufacturer’s rep, as well as a solutions provider. Many of Mark’s customers leverage him to develop custom systems or help integrate systems in their test and measurement process.

So where does Interface fit into all this? Going back again to MTS Systems, Mark would often interact with Interface. He developed a fondness for our force measurement products and systems because of their accuracy, durability and reliability. When he moved to MNME, he continued that relationship on the sales side and now acts as one of our top reps!

He, his wife and their two girls are also highly active. The family enjoys downhill skiing, boating, fishing and camping, as well as traveling the world. When we spoke to Mark, he discussed a many skiing trips he had taken in Austria, Germany, and Canada. Finally, if he wasn’t already involved in enough, he also enjoys investing in stocks and bonds. The man certainly keeps himself busy!

We are proud to have Mark at MNME representing Interface products and services. Working alongside Josh Sebasky, both provide Interface customer’s a great depth of experience and knowledge whether it is finding the right load cells or torque transducers for a test project or customizing a verification load frame solution for test and measurement programs.

To locate a representative or distributor in your area, please visit here.

Interface Solutions for Industrial Markets

The industrial market is vast. The industry classification covers everything from manufacturing and assembly to mining and agriculture. The highly regulated environments involved in industrial applications often require advanced equipment and technologies for product design and development, as well as after market performance management. Force and torque products are critical sensor components used in industrial applications.

Interface has been a partner to industrial customers for more than 50 years. We engineer, build, and supply force and torque sensors and acquisition devices designed to provide industrial engineers and manufacturers with high quality data that monitors and confirms the design and in-action processes of their equipment. Applications for industrial markets involve everything from heavy machinery to weighing solutions. The accuracy of these devices is critical to high-quality outcomes, low-costs and most importantly, worker safety.

INDUSTRIAL APPLICATIONS 

An example of an industrial process that requires an accurate force sensor is a crane application used in lifting heaving objects. Interface engaged with a customer who needed to measure the lifting capabilities of a crane using an Interface load shackle. The purpose of the shackle was to ensure the crane wasn’t lifting more than it could handle, putting worker safety at risk and potentially damaging the machine.

Interface model WTSSHK-B Wireless Load Shackle was connected to a crane load string to measure forces. A model WTS-BS-1-HA Battery Powered Handheld Display was used to wirelessly receive load information and display results. Using this solution, the customer was able to successfully measure lifting and reading weight wirelessly on a handheld display while the crane was in action.

Another great example of the industrial industry’s use of force applications can be seen in manufacturing automation. One of the growing trends in marketing automation is the use of robotics to replace repetitive human tasks. Robotic arms are often found on assembly lines and they carry out a single task over and over. If the robotic arm isn’t properly calibrated, it can ruin an entire production line and lead to significant losses. To qualify the accuracy, many OEM’s use load cells and torque transducers to continuously measure the intricate movements of a robotic arm.

One Interface customer used a robotic arm to close packaging on a production line. If the arm wasn’t accurate, it could apply to much force and crush the packaging or not close the packaging as intended, leading to losses in shipping.

Interface supplied a 6-Axis Load Cell with a model BX8 Data Acquisition and Amplifier System. The Interface Multi-Axis 6-Axis Load Cell was able to measure all forces and torques on every axis and the BX8 8-Channel Data Acquisition System was able to log, display, and graph these measurements while sending scaled analog output signals for these axes to the robot’s control system.

READ MORE HERE: FORCE MEASUREMENT IS REDUCING WASTE AND AUTOMATING THE CONSUMER PACKAGING INDUSTRY

Another consideration for specialized industrial applications is in harsh environments. There are hundreds of thousands of engineers and manufacturers that spend their days working in these environments. Whether its operating inside of facilities with large machines and intricate moving parts, working hundreds of feet in the air repairing a bridge, or deep within a mine shaft, these professionals put themselves in danger every day by the nature of their work. As engineers and manufacturers, many of us are also tasked to solve for safety challenges and keep these professionals protected in any environment.

One of the ways we contribute to industrial safety is with the development of our Interface Ex Rated Load Cells, also known as Interface Intrinsically Safe Products. These specialized load cells and force measurement solutions are designed and manufactured so that the materials and electronic components are safe for use in hazardous gas and dust environments when installed per applicable installation instructions. These components are designed for those applications found in dangerous environments in particular industries like oil and gas, mining, aerospace, automotive and more.

The applications for industrial vary widely because the industry is diverse. Interfaces designs and manufacturers force and torque products for hundreds of different industrial use cases and applications every year. Our team of engineers can even create custom solutions for new and innovative industrial requirements. Included below are examples of some of the products typically used by our industrial customers.

  • 2400 Load Cell Series – The 2400 is a stainless-steel load cell designed for applications requiring a hermetic seal for use in general industrial applications.
  • 3200 Load Cell Series – The 3200 precision stainless steel load cell series has all the features of the Interface Model 1200 LowProfile® (one of Interface’s most popular products) and in addition it is stainless steel and hermetically sealed for harsh applications.
  • SSMH Load Cell Series – Model SSMH S-type load cell provides a suitable force measurement sensor for applications in coal mining and transfer and other heavy industries where explosive dusts and environment conditions are potentially explosion-hazard rated. SSMH capacities available that provide intrinsically safe certification.
  • Stainless Steel Load Buttons – Interface’s load button load cells are designed for customers who require the measurement of forces in a very confined space. They are designed to provide the most accuracy in as little space as possible.
  • 5400 Series Reaction Torque Transducer Series – Model 5400 series features a rugged flange-style designed with thru-holes, low deflection, high torsional stiffness and the ability to withstand large overhung moments.
  • Wireless Telemetry System (WTS) – High accuracy, high quality measurement is interfaced with simple yet powerful configuration and monitoring software. The WTS gives sensor manufacturers and integrators the complete flexibility to build their own sensor modules around it. The system easily replaces wired systems, reducing installation and maintenance costs.

These are just a few examples of Interface applications notes and products designed for industrial applications. For more information on Interface solutions design for the Industrial industry, contact our experienced application engineers.

 

Test Stand Applications for Force and Torque

In the world of test and measurement, test stands are essential equipment for manufacturers and testing engineers. The test stand provides a host of different testing products in a single “cabinet-like” structure. These systems have been used for a long time to gather data on various functions of products during the product test phase.

Test stands works like a mobile test lab, hosted by a frame and containing one or more force or torque sensor components, software, and data acquisition instrumentation and accessories. Force stands are typically motorized or manual.  Motorized test stands, also known as mechanical or electrical, have the advantages of controlling performance by applying modes such as speed, cycles, and time into the testing procedure. The more advanced testing stands are frequently used for repetitive high-performance testing requirements, validating accuracy and quality. Manual test stands are used for simple testing protocols and frequently used in education programs.

There are a wide variety of testing devices and sensor products that are used as part of the entire test process. As parts roll off the production line, the test stand will sit at the end of the line where the test engineer can immediately load the product into the test rig. Test stands help to streamline the test process by providing all available test functions in a single, mobile application.

Interface is a supplier of choice for precision components of various capacities and dimensions for test stand configurations requiring precision and accuracy in performance. Interface load cells, torque transducers, and instrumentation equipment are commonly used in numerous product test applications by engineers, metrologists, testing professionals and product designers around the world.

Included below are a few examples of specific test applications and the Interface components used in the different style testing stands.

Linear Test Stand

In this example, an Interface customer wanted to add a crush test to their test stand to measure the force it took to deform a piece of material. Interface provided an Model 1210 Load Cell with an internal amplification of 0-10VDC output.

The load cell was installed into the load string of the customer’s load frame, and the scaled analog output from the load cell was connected to the customer’s test stand instrumentation. When the force levels reached the crushing point, the customer’s software was able to read the output of the amplified load cell and record the value.

See the application note for the Linear Test Stand here.

Motor Test Stand

In the quality control lab at a major automotive manufacturing company, a test engineer needed to test, record, and audit the torque produced by a new motor design under start load. Interface supplied the new AxialTQ® Rotary Torque Transducer that connected between the motor and the differential, on the drive shaft, that could measure and record these torque values.

Based on the data collected using the AxialTQ transducer, along with the AxialTQ Output Module, and a laptop, the test engineer was able to make recommendations to optimize the amount of torque created by the new motor design.

See the application note for the Motor Test Stand here.

Verification Test Stand

In this application, a customer needed a test stand application to verify that its load cell was in good, working order. Interface helped to create a solution that used a load cell to verify the customer’s load cell. The solution involved the customer’s supplied verification load frame and an Interface Model 1210 Precision LowProfile® Load Cell connected with a Model SI-USB 2-Channel PC Interface Module.

The customer was able to install their load cell and Model 1210 Precision LowProfile Load cell into the verification load frame. Applied forces were displayed and recorded by Model SI-USB PC Interface Module for review and record keeping on customer’s computer. This allows the customer to have a proven load cell verification test stand at their disposal to ensure its test load cell is always in working order.

See the application note for the Verification Test Stand here.

These are just a few examples of the different types of test stands that Interface can provide off-the-shelf or custom force measurement solution components. If your project involves a mechanical test stand and you are interested in learning more about adding force sensors, please contact our application engineers.

Force Measurement Solutions for the Construction Industry

In the world of heavy machinery, the ability to protect these investments is critical to an efficient and cost-effective worksite. This is especially true in the construction industry, where any type of damage or disruption to onsite equipment can significantly delay project timelines and cost a construction company hundreds of thousands of dollars, or more.

Protecting equipment is important in the industry; however, the safety of people is paramount. Severe failures of the equipment can be dangerous to machine operators. One way construction companies are protecting people and their material investments is through the use of force sensor technologies with Interface’s precision load cells, torque transducers, load pins, tension links and load shackles, as well as data acquisition instrumentation.

The use of force measurement is a growing trend in construction because companies realize that they can use force sensors to track performance data on a wide variety of heavy machinery. This data can inform machine operators when they were pushing the machines past their respective limits.

Applications of Force Measurement Products Used in the Construction Industry

One of the key use cases of force sensors used in the construction industry is on heavy machinery attachments. Construction sites frequently utilize a crane, which is used to lift large bundles of material such as wood or steel with a grabbing type attachment, or used to transport construction workers to large heights with a basket or platform attachment.

For cranes outfitted with a lifting attachment such as a claw, a tension sensor can be used on the pulley mechanism to measure the weight lifted by the crane. The tension sensor can provide real-time data to the construction crew to help monitor the lifting process and provide the operator with the information necessary to refrain from lifting weights that are too heavy for the crane to handle. If the claw arm lifts more than the crane is able to withstand, the attachment could break off, or worse, the crane could topple over.

Another example of a crane attachment that can benefit from a force measurement sensor is the basket or platform type attachment used to transport workers to great heights. In this use case, a rotary actuator between the basket attachment and crane can be outfitted with a pressure transducer. This type of sensor will help measure the force placed on the attachment point to help rotate the basket in multiple directions and provide force data to ensure the basket isn’t over-rotated or carrying too much weight.

The final example of sensor technology used in construction is with a smart clamp. This is a use case that can be seen in multiple industries, in addition to the construction industry. A smart clamp, or soft-touch clamp, uses a compression load cell attached to a gauged piece of metal on both ends of the clamp. The clamp attachment is often placed on the end of a forklift type machine and used to transport delicate materials, packages, and other materials.

The compression load cell works by providing data back to the operator, letting them know how much force can be used to grab the object without breaking it. This used case is often found in the consumer packaging industry but can also be applied to the construction industry when transporting delicate building materials.

For many years, construction companies used this type of equipment and heavy machinery without the use of force sensors, making it harder to keep the equipment and workers safe. Today, more companies that develop attachments and heavy machinery have begun exploring force sensors to optimize the use of these machines. This creates a safer, more efficient and cost-effective environment for construction companies and protects their workers.

To learn more about specific construction industry use cases, review our detailed application notes below:

Lifting Heavy Objects

Harness Durability Testing

Interface is engaging with a number of customers in these industries to develop solutions to keep equipment safe and performing at optimal efficiency. To learn more about how force sensors can be used to protect your investments, contact our specialized application engineers and representatives of Interface products and solutions.

Contributor: Dan McAneny, co-founder and sales engineer at Tritek Solutions, one of Interface’s sales representatives covering the Pacific Northwest.