Posts

Interface Supports Wind Tunnel Testing

In the development of an airborne vehicle, like a plane or helicopter, wind tunnel systems are used to gather data across a variety of tests related to the aerodynamics of the vehicle’s design. Whether an object is stationary or mobile, wind tunnels provide insight into the effects of air as it moves over or around the test model. Interface is a supplier of measurement solutions used for aircraft and wind tunnel testing.

Wind tunnels are chambers that test small scale model versions of full systems, or in some cases, parts and components, depending on the size and capabilities of the wind tunnel. They work by allowing the engineers to control airflow within the tunnel and simulate the types of wind force that airplanes and other aircraft will experience in flight. Wind tunnels are also used for testing automobiles, bicycles, drones and space vehicles.

By taking careful measurements of the forces on the model, the engineer can predict the forces on the full-scale aircraft. And by using special diagnostic techniques, the engineer can better understand and improve the performance of the aircraft.

The process for measuring the force and how it reacts to this force works by mounting the model in the wind tunnel on a force balance or test stand. The output is a signal that is related to the forces and moments on the model. Balances can be used to measure both the lift and drag forces. The balance must be calibrated against a known value of the force before, and sometimes during, the test.

Interface’s strain gage load cells are commonly used in wind tunnel testing due to their quality, accuracy and reliability. The instrumentation requirements often depend on the application and type of test. The range of options for both load cells and instrumentation vary based on scale, use, cycle counts, and data requirements.

Instrumentation used in wind tunnel testing can be as simple as our 9325 Portable Sensor Display to a multi-channel data acquisition system. Interface analog, digital and wireless instrumentation solutions provide a range of possibilities. As is the case, wind tunnel testing is typically very sensitive. It is important to calibrate the instrumentation before each test to measurement accuracy.

Types of Wind Tunnel Tests Using Force Measurement Solutions

  • Lift and drag: Load cells are used to measure the two most significant forces that impact aircraft design. Lift is the force that acts perpendicular to the direction of airflow and keeps the craft airborne. Drag is the force that acts parallel to the direction of airflow and opposes forward motion.
  • Side force: This force acts perpendicular to both the direction of airflow and the lift force. It is caused by the difference in pressure between the upper and lower surfaces of the aircraft.
  • Moments: Moments are the forces that act around a point. The most common moments measured in wind tunnels are the pitching moment, the yawing moment, and the rolling moment.
  • Stability and control: Tests conducted to measure the stability and controllability of an aircraft are commonly using force measurement solutions for aircraft design changes or integrating new parts into an existing model.
  • Performance: Particularly important with new designs, engineers use these tests to measure the simulated flight performance under maximum speed, range and fuel efficiency.

The specific tests that are conducted in a wind tunnel depend on the project requirements.

Multi-Axis Sensors for Wind Tunnel Testing Applications

In measuring the forces of a wind tunnel test, multi-axis sensors offer the perfect solution for collecting as much data as possible across every axis, giving the engineer a more complete picture on the aerodynamics of the plane. In fact, Interface has supplied multi-axis load cells for use in several wind tunnel testing applications, for OEMs, testing facilities and part makers.

We offer a variety of multi-axis options including 2, 3 and 6-axis standard and high-capacity configurations depending on testing and data requirements of the user. These sensors can precisely measure the applied force from one direction with little or no crosstalk from the force or moment. Interface products provide excellent performance and accuracy in force and torque measurement.

To match the demands of the volumes of data available using multi-axis sensors in wind tunnel testing, Interface often provides several data acquisition instrumentation solution along with our BlueDAQ software.

Wind Tunnel Test Application

A major aerospace company was developing a new airplane and needed to test their scaled model for aerodynamics in a wind tunnel, by measuring loads created by lift and drag. Interface Model 6A154 6-Axis Load Cell was mounted in the floor of the wind tunnel and connected to the scaled model by a stalk. The wind tunnel blew air over the scaled model creating lift and drag, which was measured and compared to the theoretical airplane models. The output of the 6-axis sensor was connected to the BX8-AS Interface BlueDAQ Series Data Acquisition System, which was connected via USB cable to a computer. Using this solution, the company was able to analyze the collected data and made the necessary adjustments in their design to improve the aerodynamics of their theoretical airplane models.

Interface supports wind tunnel testing and all uses of force measurement in the advancements in aeropspace.

Wind tunnel testing is critical to the aircraft industry, as well as other industries like automotive and space. Interface has been providing multi-axis sensors and strain gage load cells to industry leaders and wind tunnel operators. We understand the unique needs of this type of testing and the instrumentation options that work best with our high-accuracy sensors. We also can work to provide custom solutions, load cells for use in extreme environmental conditions. Contact us to get the right solution for your specific testing program.

Additional Resources

Aircraft Wing Fatigue App Note

Airplane Jacking System

Interface Airplane Static Testing Case Study

Taking Flight with Interface Solutions for Aircraft Testing

Aircraft Yoke Torque Measurement

Aircraft Screwdriver Fastening Control App Note

Interface’s Crucial Role in Vehicle and Urban Mobility Markets

Rigging Engineers Choose Interface Measurement Solutions

 

Unlocking the Power of DAQ Webinar Recap

Interface hosted a technical seminar on the topic of data acquisition systems. With the demands for more data and faster processing with requirements to connect multiple devices in testing environments, there is an increasing need for high accuracy DAQ systems. Keith Skidmore and Dave Reardon detail the basics of DAQ, trends, products, software options and answer to questions in the webinar, Unlocking the Power of DAQ.

To start, a data acquisition (DAQ) system consists of hardware and software components designed to collect, process, and analyze data from various sources and convert it into digital format for further analysis and storage.

Components of DAQ Systems

  • Input:  Sensors (Ex: Force, Torque), Digital Signals (Ex: DIO, Counters), Timing Signals (Ex: IRIG, GPS) and Serial Streams (Ex: RS-232, RS-422)
  • Signal Conditioning Circuitry: Excitation, Amplifier, Voltage Offsets, and Filters
  • Analog-to-Digital Converters (ADC)
  • Digital-to-Analog Converters (DAC)
  • Hardware and Software for processing, analyzing, display and recording
  • Output Signal: prior to ADC, after DAC, or even after processing

Analog data acquisition systems acquire and process analog signals. Analog signals can include sensors that measure load, force, torque, strain, temperature, pressure, voltage, current, and many other physical or electrical qualities.  Digital data acquisition systems acquire and process digital signals. Digital signals can include on and off states, counters, serial streams, text data, video, GPS signals, and other advanced options.

 Key Considerations for DAQ Systems

  • Features
    • Supported range of inputs mV/V, VDC, mA, partial bridge, encoder, pulse, frequency
    • Included software and related functionality
  • Form factor
    • Bench top, rack mount, portable, ruggedized and others
  • Sample rate
  • Connectivity
  • Power supply
  • Channel count and cost per channel

Interface DAQ Products

Interface offers a range of solutions for DAQ systems. The top products for DAQ include:

During the webinar, Keith and Dave detail a series of product groups for the Interface Data AQ Packs.

Data AQ Pack Brochure

Watch the webinar and learn more about product options, software, applications and best practice tips.

Testing Labs Choose Interface High Accuracy Products

Specialists focused on testing applications work in a variety of testing lab environments. In each lab, technicians rely on the tools to collect and report on data that is used to make products safer, guarantee performance, ensure quality, and to meet the strict industry standards and requirements. Accuracy in testing data is dependent on the precision measurement devices and instrumentation used to capture the results.

We supply lab engineers with high-accuracy sensor technologies used to complete rigid test requirements. Interface is the top provider of test and measurement products used for structural and material testing, static and fatigue testing, torsion effects, tension tests, calibration testing, and environmental testing. Read more in Types of Force Measurement Tests 101.

Our standard high precision load cells, torque transducers, multi-axis sensors, and instrumentation are used on every continent for T&M. Based on our quality and performance, we are the chosen supplier to calibration and testing labs. We see our products used today for continuous improvement programs, advancements in smart manufacturing and new product designs.

If it must be measured, Interface has a solution. Our products are designed for small and large testing facilities, including calibration-grade load cells, load frames and test stands, along with data acquisition systems. The wide variety of our force measurement solutions designed for testing labs means we play a role in every industry that is making a physical product and the test labs that validates the products performance.

Testing Labs and Types of Testing Using Interface Solutions

General Automotive Test Labs:

  • Component and Sub-Component Level Testing
  • Suspension Testing
  • EV Battery Testing

Automotive Driveline Testing:

  • Engine Performance and Durability Tests
  • Motor Efficiency Testing
  • Power Analyzation (Electric)

Aerospace Testing:

  • Full Scale Structural Static Testing
  • Component Fatigue Test
  • High Precision Thrust Testing
  • Simulators
  • Wind Tunnel Testing

Geotechnical and Civil Testing

  • Concrete or Asphalt Core Testing
  • Soils Testing

General Structural and Component Testing

  • General Push and Pull
  • Design Proofing
  • Life Cycle Fatigue Validation

Medical Device Testing:

  • Prototyping
  • PPAP Validation and FDA Certification
  • Device Lifecycle Testing

Consumer Product Testing Labs:

  • Design Validation
  • Material Testing
  • Fatigue and Failure Tests

Interface recently highlighted testing lab applications in our Test Lab Essentials Webinar. Here you can see the lab use cases and products as they are reviewed by our applications experts.

Each of these testing types requires different force testing equipment, and our experts work directly with testing lab professionals to determine the products or systems they need for single and ongoing test requirements.

As testing technologies becomes increasingly complex, off-the-shelf products may not meet the needs of every Interface customer. We lend engineers expertise in test and measurement to support unique and custom requirements to get the right sensor, instrument, and system in place.

Since our first load cells were designed five decades ago, we have built millions upon millions of load cells and torque transducers used in testing labs around the world. Our products are built to withstand the rigor and requirements needed for high quality and reliable data collection in test and measurement. Our test customers depend on us for proving accuracy, consistency, and reliability in performance.

ADDITIONAL RESOURCES

Interface and Testing Lab Applications

Testing Lab Essentials Webinar

Engine Dynamometer App Note

Consumer Product Testing Case Study

Interface Solutions for Safety and Regulation Testing and Monitoring

Metrologists and Calibration Technicians 101

Motor Test Stand

GS-SYS04 Gold Standard® Portable E4 Machine Calibration System

Electric Vehicle Structural Battery Testing

Furniture Fatigue Cycle Testing App Note

Regular Calibration Service Maintains Load Cell Accuracy

 

Data Acquisition Systems 101

Engineers and testing professionals use data acquisition systems to enable smart decisions. The data retrieved through DAQ systems empower users to identify points of failure, optimize performance, and create efficiencies in products and processes.

When it comes to measuring force, the accuracy and reliability of the sensor is a critical component to receiving quality data. The data acquired from measurement devices, including load cells, torque transducers, and other types of force sensors, is valuable for product development, research, and robust testing to ensure performance and durability of all types of innovations. Ultimately, utilizing precision-based data provides enhanced control and response for all types of applications and use cases. Interface provides a wide range of data acquisition instrumentation that is easily paired with our force measurement products.

By definition, a data acquisition system is a collection of components used to acquire data via analog signals and converting them to digital form for storage, research, and analysis. Data acquisition systems, also called DAQ systems, typically are made up of sensors, signal conditioners, converters, plus computer hardware and software for logging and analysis. Interface experts are available to help pair the transducers with the right instrumentation.

The data acquired through the measurement device is only useful if it is logged for analysis and traceability. This is where instrumentation, in particular DAQ systems come into play, in not only transferring data, but also obtaining the right type of data in a format and data transfer method that works with existing user systems.

Data acquisition that utilizes analog output has long been the standard in the industry. As new requirements for use cases and applications grow, test and measurement professionals and engineers find these systems advantageous because of the lower cost, easy integration, and scalability. They also like the advantage of daisy-chaining multiple sensors together on a single cable run to maximize the amount of data through single tests. More data improves the quality of analysis and monitoring.

Advancements in sensor technologies coincide with growing demands for digitalization and to gather more testing data. This is seen using multi-axis sensors, along with requirements for multi-channel acquisition that can integrate into existing systems already designed with specific digital connections and protocols.

In addition to improving speed of data output, acquisition systems offer an abundance of value-added benefits. This is primarily due to the digital signal, as they are less susceptible to noise and are more secure. The systems also typically have built in error detection. Digital signals are best for transmitting signals across longer distances or when you need to allow for simultaneous multi-directional transmissions. Many people like the ease of integration, both into existing networks as well as with other testing devices.

Data acquisition systems and accessories come in many shapes and sizes, wired and wireless and there are also a handful of different software options in different systems. All these various products such as digital instruments, input and output modules, cables, monitors, and accessories. Interface offers a range of DAQ products, including full systems including the sensors.

Interface Complete Data Acquisition Systems

BlueDAQ Data QA Pack

Force sensors can easily connect via the BlueDAQ Family Data AQ Pack for fast and accurate data acquisition. This solution provides a convenient way to view the test results from transducers including single axis, dual axis, 3-axis, and 6-axis multi-axis sensors. Check out our BX8-HD44 BlueDAQ Series Data Acquisition System for Multi-Axis Sensors with Lab Enclosure.

T-USB-VS Rotary Torque Transducer Data AQ Pack

Connecting dynamic torque transducers to the T-USB Rotary Torque Transducer Data Acquisition Pack will provide you with convenient way to view the test results for your torque transducers that have internal USB functionality.

WTS Wireless Data AQ Pack

Utilizing the popular WTS Wireless Data Acquisition Pack provides convenient wireless communication with speeds up to 200 samples per second. Learn more in our Interface Wireless Telemetry System Review. See the complete line Interface WTS here.

DIG-USB PC Interface Module Data AQ Pack

Interface’s DIG-USB Data Acquisition Pack enables a straightforward way to view the test results our load cells or torque transducers. Check out the popular DIG-USB Output Module and the DIG-USB-F Fast USB Output Module.

9325 Portable Display Data AQ Pack

Interface’s 9325 Data Acquisition Pack makes your system portable. The 9325 allows simple display of strain bridge based measurements such as load cells, torque transducers, and other mV/V output transducers with sensitivity up to +/-1 V/V.

INF-USB-VS3 PC Interface Module Data AQ Pack

Our INF-USB-VS3 Data Acquisition Pack connects Interface mV/V load cells or torque transducers to provide real-time data analysis.  Here is more information about the INF-USB3 Universal Serial Bus Single Channel PC Interface Module.

Interface Data Acquisition Systems are modular. We offer the complete system, including enclosures, along with single components to complete a system. Consult with our application engineers to learn what system would be best for your test and measurement programs.

Data AQ Pack Brochure

 

 

 

Interface Supplies Agriculture Industry with Sensor Technologies

The global agribusiness industry is estimated to be $5 trillion and growing rapidly. The Association of Equipment Manufacturers (AEM) notes that agriculture innovators and product development are contributions to quality of life, economic growth, employment, and environment in a big way. Interface is proud to be a supplier of sensor solutions, from load cells to instrumentation, to the agriculture industry.

Any time you are manufacturing tractors, self-propelled harvesting combines, robotics, silo structures, monitoring technologies and other equipment used for crop production and farm animal management, test and measurement has an important part. T&M is essential in validating performance, functionality, and safety. Interface load cells, torque transducers, multi-axis sensors, instrumentation and data acquisition systems are essential for these different kinds of agricultural applications. These products can be paired together to ensure efficiency, sustainability, and proper production planning. Interface sensors can also regulate through harsh weather conditions often experienced on a farm such has rain, humidity and unbearable temperatures, both low and high, while still maintaining a high testing and measurement performance.

In the case study Interface Solutions Used in Growing Agriculture Innovation, we outline how our sensors and data acquisition devices are designed to provide engineers with high-quality force and torque data to monitor and confirm the design and in-action processes of a wide variety of equipment. Interface products are ideal for manufacturers that develop agricultural machinery. Load cells and torque transducers, as well as DAQ and instrumentation solutions provide accurate force and torque data to monitor and confirm the design and in-action processes. This applies to a wide variety of agriculture equipment used to push, pull, lift, contain, and move things ranging from seed to cattle. To perfect these inventions and ensure safety, Interface sensors play a pivotal role.

If you would like to dig into a series of use cases that for the agriculture industry, we’ve included links below:

Faces of Interface Featuring Mark Bliss

For our newest edition of Faces of Interface, we had the opportunity to talk with Mark Bliss, senior application engineer, with our manufacturer’s representative, Minnesota Measurement Engineering.

Minnesota Measurement Engineering (MNME) works across a wide variety of industries throughout Minnesota, North Dakota, South Dakota, Western Wisconsin, and Iowa. They help engineers specify sensing, testing, and measuring products that best fit their needs and the needs of their application. In addition, MNME builds and integrates custom test and measurement systems for customers. We are thrilled to have them as a partner and are proud to feature Mark Bliss and the team at MNME.

Mark is proud to be a career learner, especially as it pertains to science and engineering. Mark’s mother was a librarian, and his father was involved in science. His upbringing led both himself and his brother to pursue a career in engineering.

Mark attended the University of Minnesota, where he received a Bachelor of Science in Mechanical Engineering. During his time in school, he also engaged in several high-profile internships with Thermo King Corporation, Ecolab, Inc., and Honeywell. This experience helped him get hired at Boeing shortly after college.

Mark spent a year and two months with Boeing as a mechanical design engineer before he and his wife decided they wanted to return to Minnesota. With the move, Mark joined MTS Systems Corporation where he served as a mechanical engineer and program leader within the Systems Product Development R&D Group.

Mark also started his own engineering consulting services company 2RM, LLC. Mark’s passion for engineering pushed him to moonlight as a consultant for everything from OEMs to startups. Some of the work he conducted included custom machine design, structural finite element analysis and optimization, reverse engineering, prototyping, component and material sourcing, in addition to boosting his skill set in sales, accounting, marketing and customer service.

In 2015, Mark was looking for a new challenge and saw an opportunity to take on a sales role at MNME while still applying his passion for engineering through the custom systems side of the business.

As a Senior Application Engineer at MNME, Mark is responsible for assisting customers with force, torque, pressure, acceleration, position, flow, vibration, data acquisition, and custom solutions for R&D, industrial, and OEM applications. His role includes supporting customer product information and quoting requests, visiting customers to understand and identify needs, following up on leads and principal contact reports, identifying sales opportunities and maintaining relationships with customers of all sizes.

Mark mentions that the best part about his position with MNME is the fact that he gets to see and work with new technology every day. Some days he might be working with a medical device manufacturer and the next day he is selling solutions for an autonomous vehicle. The diversity of his customers keeps him on his toes and ensures he’s always learning something new.

He also loves the fact that he gets to continue getting hands on with technology. One of the unique capabilities of MNME is the fact that they act as both a manufacturer’s rep, as well as a solutions provider. Many of Mark’s customers leverage him to develop custom systems or help integrate systems in their test and measurement process.

So where does Interface fit into all this? Going back again to MTS Systems, Mark would often interact with Interface. He developed a fondness for our force measurement products and systems because of their accuracy, durability and reliability. When he moved to MNME, he continued that relationship on the sales side and now acts as one of our top reps!

He, his wife and their two girls are also highly active. The family enjoys downhill skiing, boating, fishing and camping, as well as traveling the world. When we spoke to Mark, he discussed a many skiing trips he had taken in Austria, Germany, and Canada. Finally, if he wasn’t already involved in enough, he also enjoys investing in stocks and bonds. The man certainly keeps himself busy!

We are proud to have Mark at MNME representing Interface products and services. Working alongside Josh Sebasky, both provide Interface customer’s a great depth of experience and knowledge whether it is finding the right load cells or torque transducers for a test project or customizing a verification load frame solution for test and measurement programs.

To locate a representative or distributor in your area, please visit here.

Interface Solutions for Industrial Markets

The industrial market is vast. The industry classification covers everything from manufacturing and assembly to mining and agriculture. The highly regulated environments involved in industrial applications often require advanced equipment and technologies for product design and development, as well as after market performance management. Force and torque products are critical sensor components used in industrial applications.

Interface has been a partner to industrial customers for more than 50 years. We engineer, build, and supply force and torque sensors and acquisition devices designed to provide industrial engineers and manufacturers with high quality data that monitors and confirms the design and in-action processes of their equipment. Applications for industrial markets involve everything from heavy machinery to weighing solutions. The accuracy of these devices is critical to high-quality outcomes, low-costs and most importantly, worker safety.

INDUSTRIAL APPLICATIONS 

An example of an industrial process that requires an accurate force sensor is a crane application used in lifting heaving objects. Interface engaged with a customer who needed to measure the lifting capabilities of a crane using an Interface load shackle. The purpose of the shackle was to ensure the crane wasn’t lifting more than it could handle, putting worker safety at risk and potentially damaging the machine.

Interface model WTSSHK-B Wireless Load Shackle was connected to a crane load string to measure forces. A model WTS-BS-1-HA Battery Powered Handheld Display was used to wirelessly receive load information and display results. Using this solution, the customer was able to successfully measure lifting and reading weight wirelessly on a handheld display while the crane was in action.

Another great example of the industrial industry’s use of force applications can be seen in manufacturing automation. One of the growing trends in marketing automation is the use of robotics to replace repetitive human tasks. Robotic arms are often found on assembly lines and they carry out a single task over and over. If the robotic arm isn’t properly calibrated, it can ruin an entire production line and lead to significant losses. To qualify the accuracy, many OEM’s use load cells and torque transducers to continuously measure the intricate movements of a robotic arm.

One Interface customer used a robotic arm to close packaging on a production line. If the arm wasn’t accurate, it could apply to much force and crush the packaging or not close the packaging as intended, leading to losses in shipping.

Interface supplied a 6-Axis Load Cell with a model BX8 Data Acquisition and Amplifier System. The Interface Multi-Axis 6-Axis Load Cell was able to measure all forces and torques on every axis and the BX8 8-Channel Data Acquisition System was able to log, display, and graph these measurements while sending scaled analog output signals for these axes to the robot’s control system.

READ MORE HERE: FORCE MEASUREMENT IS REDUCING WASTE AND AUTOMATING THE CONSUMER PACKAGING INDUSTRY

Another consideration for specialized industrial applications is in harsh environments. There are hundreds of thousands of engineers and manufacturers that spend their days working in these environments. Whether its operating inside of facilities with large machines and intricate moving parts, working hundreds of feet in the air repairing a bridge, or deep within a mine shaft, these professionals put themselves in danger every day by the nature of their work. As engineers and manufacturers, many of us are also tasked to solve for safety challenges and keep these professionals protected in any environment.

One of the ways we contribute to industrial safety is with the development of our Interface Ex Rated Load Cells, also known as Interface Intrinsically Safe Products. These specialized load cells and force measurement solutions are designed and manufactured so that the materials and electronic components are safe for use in hazardous gas and dust environments when installed per applicable installation instructions. These components are designed for those applications found in dangerous environments in particular industries like oil and gas, mining, aerospace, automotive and more.

The applications for industrial vary widely because the industry is diverse. Interfaces designs and manufacturers force and torque products for hundreds of different industrial use cases and applications every year. Our team of engineers can even create custom solutions for new and innovative industrial requirements. Included below are examples of some of the products typically used by our industrial customers.

  • 2400 Load Cell Series – The 2400 is a stainless-steel load cell designed for applications requiring a hermetic seal for use in general industrial applications.
  • 3200 Load Cell Series – The 3200 precision stainless steel load cell series has all the features of the Interface Model 1200 LowProfile® (one of Interface’s most popular products) and in addition it is stainless steel and hermetically sealed for harsh applications.
  • SSMH Load Cell Series – Model SSMH S-type load cell provides a suitable force measurement sensor for applications in coal mining and transfer and other heavy industries where explosive dusts and environment conditions are potentially explosion-hazard rated. SSMH capacities available that provide intrinsically safe certification.
  • Stainless Steel Load Buttons – Interface’s load button load cells are designed for customers who require the measurement of forces in a very confined space. They are designed to provide the most accuracy in as little space as possible.
  • 5400 Series Reaction Torque Transducer Series – Model 5400 series features a rugged flange-style designed with thru-holes, low deflection, high torsional stiffness and the ability to withstand large overhung moments.
  • Wireless Telemetry System (WTS) – High accuracy, high quality measurement is interfaced with simple yet powerful configuration and monitoring software. The WTS gives sensor manufacturers and integrators the complete flexibility to build their own sensor modules around it. The system easily replaces wired systems, reducing installation and maintenance costs.

These are just a few examples of Interface applications notes and products designed for industrial applications. For more information on Interface solutions design for the Industrial industry, contact our experienced application engineers.

 

Test Stand Applications for Force and Torque

In the world of test and measurement, test stands are essential equipment for manufacturers and testing engineers. The test stand provides a host of different testing products in a single “cabinet-like” structure. These systems have been used for a long time to gather data on various functions of products during the product test phase.

Test stands works like a mobile test lab, hosted by a frame and containing one or more force or torque sensor components, software, and data acquisition instrumentation and accessories. Force stands are typically motorized or manual.  Motorized test stands, also known as mechanical or electrical, have the advantages of controlling performance by applying modes such as speed, cycles, and time into the testing procedure. The more advanced testing stands are frequently used for repetitive high-performance testing requirements, validating accuracy and quality. Manual test stands are used for simple testing protocols and frequently used in education programs.

There are a wide variety of testing devices and sensor products that are used as part of the entire test process. As parts roll off the production line, the test stand will sit at the end of the line where the test engineer can immediately load the product into the test rig. Test stands help to streamline the test process by providing all available test functions in a single, mobile application.

Interface is a supplier of choice for precision components of various capacities and dimensions for test stand configurations requiring precision and accuracy in performance. Interface load cells, torque transducers, and instrumentation equipment are commonly used in numerous product test applications by engineers, metrologists, testing professionals and product designers around the world.

Included below are a few examples of specific test applications and the Interface components used in the different style testing stands.

Linear Test Stand

In this example, an Interface customer wanted to add a crush test to their test stand to measure the force it took to deform a piece of material. Interface provided an Model 1210 Load Cell with an internal amplification of 0-10VDC output.

The load cell was installed into the load string of the customer’s load frame, and the scaled analog output from the load cell was connected to the customer’s test stand instrumentation. When the force levels reached the crushing point, the customer’s software was able to read the output of the amplified load cell and record the value.

See the application note for the Linear Test Stand here.

Motor Test Stand

In the quality control lab at a major automotive manufacturing company, a test engineer needed to test, record, and audit the torque produced by a new motor design under start load. Interface supplied the new AxialTQ® Rotary Torque Transducer that connected between the motor and the differential, on the drive shaft, that could measure and record these torque values.

Based on the data collected using the AxialTQ transducer, along with the AxialTQ Output Module, and a laptop, the test engineer was able to make recommendations to optimize the amount of torque created by the new motor design.

See the application note for the Motor Test Stand here.

Verification Test Stand

In this application, a customer needed a test stand application to verify that its load cell was in good, working order. Interface helped to create a solution that used a load cell to verify the customer’s load cell. The solution involved the customer’s supplied verification load frame and an Interface Model 1210 Precision LowProfile® Load Cell connected with a Model SI-USB 2-Channel PC Interface Module.

The customer was able to install their load cell and Model 1210 Precision LowProfile Load cell into the verification load frame. Applied forces were displayed and recorded by Model SI-USB PC Interface Module for review and record keeping on customer’s computer. This allows the customer to have a proven load cell verification test stand at their disposal to ensure its test load cell is always in working order.

See the application note for the Verification Test Stand here.

These are just a few examples of the different types of test stands that Interface can provide off-the-shelf or custom force measurement solution components. If your project involves a mechanical test stand and you are interested in learning more about adding force sensors, please contact our application engineers.

Force Measurement Solutions for the Construction Industry

In the world of heavy machinery, the ability to protect these investments is critical to an efficient and cost-effective worksite. This is especially true in the construction industry, where any type of damage or disruption to onsite equipment can significantly delay project timelines and cost a construction company hundreds of thousands of dollars, or more.

Protecting equipment is important in the industry; however, the safety of people is paramount. Severe failures of the equipment can be dangerous to machine operators. One way construction companies are protecting people and their material investments is through the use of force sensor technologies with Interface’s precision load cells, torque transducers, load pins, tension links and load shackles, as well as data acquisition instrumentation.

The use of force measurement is a growing trend in construction because companies realize that they can use force sensors to track performance data on a wide variety of heavy machinery. This data can inform machine operators when they were pushing the machines past their respective limits.

Applications of Force Measurement Products Used in the Construction Industry

One of the key use cases of force sensors used in the construction industry is on heavy machinery attachments. Construction sites frequently utilize a crane, which is used to lift large bundles of material such as wood or steel with a grabbing type attachment, or used to transport construction workers to large heights with a basket or platform attachment.

For cranes outfitted with a lifting attachment such as a claw, a tension sensor can be used on the pulley mechanism to measure the weight lifted by the crane. The tension sensor can provide real-time data to the construction crew to help monitor the lifting process and provide the operator with the information necessary to refrain from lifting weights that are too heavy for the crane to handle. If the claw arm lifts more than the crane is able to withstand, the attachment could break off, or worse, the crane could topple over.

Another example of a crane attachment that can benefit from a force measurement sensor is the basket or platform type attachment used to transport workers to great heights. In this use case, a rotary actuator between the basket attachment and crane can be outfitted with a pressure transducer. This type of sensor will help measure the force placed on the attachment point to help rotate the basket in multiple directions and provide force data to ensure the basket isn’t over-rotated or carrying too much weight.

The final example of sensor technology used in construction is with a smart clamp. This is a use case that can be seen in multiple industries, in addition to the construction industry. A smart clamp, or soft-touch clamp, uses a compression load cell attached to a gauged piece of metal on both ends of the clamp. The clamp attachment is often placed on the end of a forklift type machine and used to transport delicate materials, packages, and other materials.

The compression load cell works by providing data back to the operator, letting them know how much force can be used to grab the object without breaking it. This used case is often found in the consumer packaging industry but can also be applied to the construction industry when transporting delicate building materials.

For many years, construction companies used this type of equipment and heavy machinery without the use of force sensors, making it harder to keep the equipment and workers safe. Today, more companies that develop attachments and heavy machinery have begun exploring force sensors to optimize the use of these machines. This creates a safer, more efficient and cost-effective environment for construction companies and protects their workers.

To learn more about specific construction industry use cases, review our detailed application notes below:

Lifting Heavy Objects

Harness Durability Testing

Interface is engaging with a number of customers in these industries to develop solutions to keep equipment safe and performing at optimal efficiency. To learn more about how force sensors can be used to protect your investments, contact our specialized application engineers and representatives of Interface products and solutions.

Contributor: Dan McAneny, co-founder and sales engineer at Tritek Solutions, one of Interface’s sales representatives covering the Pacific Northwest.