Posts

Load Cells Elevate Gantry Crane Performance

Interface provides a variety of measurement solutions for gantry crane applications. Load cells aren’t just an upgrade but a game-changer for gantry crane operations.

A gantry crane is an overhead crane with a horizontal beam supported by two legs traveling along a fixed track or wheels. They are used for lifting and moving heavy objects in various industrial settings, such as warehouses, shipyards, container yards, and construction sites.

Key features of gantry cranes include:

  • Mobility: Unlike bridge cranes, fixed to a runway system, gantry cranes can move freely within their designated area. This makes them more versatile and suitable for outdoor applications.
  • Lifting capacity: Gantry cranes can be designed to lift a wide range of weights, from a few to hundreds of tons.
  • Portability: Some gantry cranes are portable and can be easily moved from one location to another.
  • Versatility: Gantry cranes can be equipped with various attachments, such as hooks, magnets, and buckets, to handle a wide range of materials.

Benefits of Using Force Measurement Solutions with Gantry Cranes

Load cells, load pins, tension links, wireless telemetry systems, and instrumentation devices from Interface are valuable to makers and users of gantry cranes.  These vital measurement solutions offer several safe and efficient operation benefits:

Overload Prevention

  • Safety: The biggest reason is preventing crane overload. Exceeding the crane’s capacity can lead to catastrophic consequences, including equipment damage, structural failure, injuries, and even fatalities. Force measurement devices, often in the form of load cells or tension links, directly measure the weight of the lifted object, ensuring it stays within safe limits.
  • Alerts and Alarm Settings: Many devices paired with specific instruments can trigger audible or visual alarms if the load approaches the limit, giving the operator time to adjust. Some advanced systems automatically shut down the lifting operation to prevent potential overload.

Improved Efficiency and Accuracy

  • Optimal load handling: Knowing the exact weight of the load allows operators to position it precisely and efficiently. This is crucial for tasks like loading and unloading containers or placing heavy machinery with minimal risk of damage.
  • Reduced energy consumption: By lifting only the necessary weight, you optimize energy usage by avoiding unnecessary strain on the crane’s motors and systems.

Maintenance and Inspection

  • Monitoring crane health: Force measurement data can be used to track crane performance over time and identify potential issues early on. This helps with preventive maintenance and ensures the crane stays in top working condition.
  • Compliance with regulations: Many workplaces have regulations requiring the monitoring of crane loads for safety reasons. Force measurement devices provide accurate data to demonstrate compliance.

Gantry Crane Applications

Tension monitoring in cable cranes: For cranes using cables instead of hydraulics, tension links measure cable tension, safeguarding against cable stress and potential breaks.

Center of gravity determination: In complex lifts with unevenly distributed weight, measuring forces at different points helps determine the load’s center of gravity, which is crucial for safe lifting and maneuvering.

Retrofitting existing cranes for safety: Crane-safe load monitoring systems are vital to crane safety. Load pins for accurate measurement are an excellent way to modernize gantry cranes. Replacing existing load-bearing pins in the crane header block to sense the load, detect the moment of lifting a load, and monitor the cranes’ maximum safe load limit.

Weighing within winch assembly: Load pins are used to measure the weight of aluminum and steel rolls. The custom load pin was designed to fit within the winch assembly, with an anti-rotation bracket to ensure correct positioning.  We also supplied a large digit wall-mounted display to enable them to see resulting loads easily.

Safety measurement system:  If the lifting load exceeds the safe lifting load, audible or visual alarms can be triggered, or if part of a control system, that action will automatically stop the lift. Additionally, having a real-time display of the lifted load allows crane operators to lift the maximum allowable amount, improving productivity by reducing the number of lifts required to complete a task.

To improve operational efficiency and safety, a measurement system is an excellent tool that can alert the crane operator to imminent excess lifting conditions that may cause harm to operators and equipment. Overall, force measurement devices are essential for the safe, efficient, and compliant operation of gantry cranes, making them a valuable investment for any lifting operation.

ADDITIONAL RESOURCES

Load Pins, Tension Links, & Shackles

Gantry Crane Weighing

A Great Force for Crane and Hoist Solutions

Interface Engineered Solutions for Lifting Webinar Recap

Seaside Ports are Optimizing Efficiency and Safety Using Interface Sensor Technologies

Jib Crane Tension Monitoring

Crane Safety Requires Precision Measurements Ship to Shore

Crane Block Safety Animated Application Note

 

Force Measurement is Fundamental in Material Testing

Material tests are run to determine the quality, durability, and resistance of materials for parts and products. Selecting the right material is critical to performance of a product, system, or part, especially as it relates to the environmental factors. It is also core for adhering to regulatory standards and compliance requirements.

Whether it is construction and concrete materials, metals, fabrics, biomaterial, plastics, packaging, or some other matter, material testing is fundamental throughout the entire development lifecycle.

Among the various ways to test materials, force measurement is one of the most important. Common uses of force measurement in material tests include applications to measure hardness, torsion, strength, compression, bending, shear, impact, creep, fatigue, and nondestructive capabilities.

The use of load cells provides an adaptable tool that can be utilized for various types of material tests. Using force measurement sensors help to detect changes in load, which is used to determine the flexibility, strength, or weakness of properties in materials. This is critical for research and quality control.

For example, in metal material testing load cells are frequently used for characterizing and assessing the quality of metallic components and structures. Material test engineers use load cells to accurately measure the tensile strength, compression resistance, and yield properties of metal samples. By subjecting metals to controlled loads and monitoring the metals deformation during tests, Interface load cells provide critical data that informs engineering decisions and quality control processes. Material tests confirm that the metals chosen for products like aircraft structures, automotive components, and sports equipment, meet stringent performance standards. The measurement sensors are also vital for determining the reliability, longevity and safety of metal materials used for any product or part. See other examples of testing in our new Interface T&M Material Testing Overview.

It is the responsibility of a material testing engineer to determine the resilience, safety, and value of materials through mechanical testing, of which material testing is one of the five categories. Ultimately, product designers and original equipment manufacturers (OEMs) rely upon material testing data to ensure their products can withstand the anticipated levels of force during use. They also need to know if the material will stretch or elongate, as well as pinpoint its exact breaking point.

Interface’s robust line of load cells, multi-axis sensors, and data acquisition systems are used for material testing. It is common to have our 1200 LowProfile load cells installed into material testing machines at test labs and onsite. We also supply a variety of miniature load cells and load pins for material testing, depending on the type of equipment and environment used for tests.

High accuracy load cells are essential in material testing due to their precision, versatility, and ability to provide real-time data, which helps researchers and engineers gain a better understanding of a material’s mechanical properties and behavior under different conditions.

If force must be measured, Interface has a solution. This applies to testing materials used for infrastructure, medical devices, aircraft, rockets, vehicles, robotics and consumer goods. As new materials and composites are introduced in revolutionary ways for use in construction, designing light weight products using polymers, and 3D printed components, it is imperative that material tests validate the use case based on high accuracy measurements.

Our force measurement products are being used to gather data from testing materials in applications used for machines, equipment, structures, packaging and more. Here are a few examples of material testing applications.

Inflatable Space Habitat

Inflatable habitats are the newest innovation in the space industry, creating a new interplanetary dwelling for humans to live and work past the Earth’s atmosphere. An innovative space industry company wanted to test the overall design and material of their inflatable habitats by conducting a burst test. Multiple clevises and LP Stainless Steel Load Pins were attached to the in the webbing material that create the inflatable habitat. When pressure was increased within the inflatable habitat, the load pins captured how much force the heavy duty material will hold at specific pressures until it explodes. Interface’s LP Stainless Steel Load Pins successfully measured the amount of force the inflatable habitat could withstand during the burst test.

Material Tensile Testing Load Frame

A customer wanted to conduct a tensile force test on different samples and materials until failure. Materials include plastic, steel, or woven fabric. They wanted to measure tensile strength, yield strength, and yield stress. Interface’s 1200 Standard Precision LowProfile™ Load Cell was installed into the customer’s test frame. The tensile test was conducted, and force results were captured by the load cell and extensometer were synced through the SI-USB4 4 Channel USB Interface Module. These results were then displayed on the customer’s PC with supplied software. With Interface’s force products, the customer was able to determine the tensile strength, yield strength, and yield stress of a variety of different materials.

Material testing is often the first step in any new product development process. With Interface force measurement solutions, our customers can expect industry-leading accuracy, quality and reliability in testing the materials that will go into their next project. Contact us for products used for various test types.

Interface Solutions for Material Testing Engineers

Tensile Testing for 3D Materials

Bending Beam Load Cell Basics

The Aviation Industry Soars Using Interface Solutions

Interface Solutions for Structural Testing

Interface Solutions Aid Pharmaceutical Industry

Interface Solutions for Heavy Equipment

Interface has collaborated with heavy equipment design engineers and OEMs for many years by providing sensors to measure weight, torque, and force. Heavy equipment, also known as heavy machinery, is used to describe the heavy-duty machines that are vastly utilized in infrastructure, construction, transportation, maritime, forestry, agriculture, and mining industries.

Force measurement plays a crucial role in the design, testing, and use of heavy equipment and vehicles including excavators, bulldozers, loaders, cranes, lifts, mixers, pavers, and compactors. Many of the considerations in designing heavy machinery are mandated by force limitations and equipment performance testing. Reference our Cranes and Lifting case study for examples.

Top Five Heavy Equipment Use Cases for Force Measurement

  1. Performance Valuation: Force measurement is used to evaluate the performance of heavy equipment. It allows engineers and designers to assess the forces and loads experienced by different components, such as hydraulic systems, structural elements, and moving parts. Measuring forces with high accuracy ensures that the equipment is built to operate within safe and efficient limits.
  2. Safety Confidence: Heavy equipment operates in demanding and challenging environments where safety is fundamental. Force measurement solutions from Interface help to identify potential safety risks by monitoring the forces exerted on various components in both testing and actual real-time use. Load cells and other sensor technologies enable engineers to design equipment with appropriate safety factors, ensuring that it can withstand the expected forces without failure or compromising operator safety.
  3. Design Optimization: Force measurement assists engineers to enhance the design of heavy equipment. By accurately measuring forces and loads during operation, and will identify areas of high stress or potential weak points. This information is valuable in refining the design, selecting appropriate materials, and implementing structural modifications to improve durability, efficiency, and overall performance.
  4. Regulatory Standards and Compliance: Heavy equipment is subject to strict industry standards and regulations, globally, nationally, and locally that specify performance and safety requirements. Force measurement is used for measuring and monitoring compliance. By accurately measuring and documenting forces, engineers can demonstrate that the equipment meets the specified criteria, aiding in regulatory approvals and certifications.
  5. Troubleshooting and Maintenance: Periodically measuring forces to monitor the condition of critical components and identify any abnormal or excessive forces is useful for identifying issues or wear. This information is critical for preventive maintenance, identifying the root causes of problems, and extending the equipment’s lifespan.

In the construction industry, heavy equipment is extensively used for retail, commercial and civic construction projects. Interface supplies load cells, tension links, load shackles, load pins and other measurement solutions for testing and monitoring.

Excavators are equipped with a hydraulic arm and a bucket, allowing them to dig, excavate, and move enormous amounts of earth, debris, or materials. Sensors are used in design, performance monitoring and maintenance of this type of machinery.

Loaders are powerful machines used for loading materials onto trucks, stockpiling, and general material handling. Overloading is the most common failure. Testing loads for these machines used in construction sites, quarries, and mining operations ensures safety and compliance.

Bulldozers need to be evaluated for earthmoving and grading projects. Rigorous force measurement evaluations help to validate power and maneuverability.

Cranes extensively utilize sensors, including load pins and tension links. During crane lifting capacity tests, force sensors are used to verify if a design for the crane can handle the loads it is required to lift and carry while in movement. This can be done with a variety of different force sensors. Interface tension link sensors are a smart choice as it can be used inbetween the crane hook and the load to provide a more accurate reading on the force. This example of force testing is critical to not only moving the required load, but also in verifying that the crane is safe to operate around workers below. If the crane lift capacity cannot be verified, individuals below the crane are at risk of massive loads dropping from great heights.

Lifts depend on sensors. In the shipping and transportation industry, heavy equipment must have carrying capacities verified or the machines and vehicles may break down or lose control due to excessive loading. In addition, operators need to be cognizant of their load limits and current use in cases. This verification is done using load cells in the testing of the vehicle, but load cells are also used at truck stops with weigh stations. Interface load cells can provide fully accurate data at extremely high weight. In addition, the engines on these trucks need to be able to move the vehicle while under large loads. For this challenge, torque transducers can be used to evaluate and refine an engine’s capability to move vehicles at required loads.

Interface sensors are used in the test and monitoring of maritime heavy equipment, both onshore and near-shore. Cranes and forklifts used in moving cargo plus maritime equipment used for securing lines often use sensor technologies. We also supply measurement devices used for heavy equipment that is submersible. This includes engine testing, mooring and fishing lines, boat hoists and more. Interface offers a complete lineup of sealed sensors that excel while submerged, allowing maritime users to test equipment in real time.

Included below, we have outlined a few heavy machinery testing examples in which Interface products were used:

Gantry Crane Weighing

Gantry cranes are used for several mobile and lifting applications within industrial or construction environments. A weighing system is needed to see if the gantry crane can manage lifting heavy containers or loads, preventing crane failure or accidents. Interface’s WTSLP Wireless Stainless Steel Load Pins can be installed into the corners of the lifting mechanism of the gantry crane, where heavy loaded containers are lifted and moved. The force results are then wireless transmitted to both the WTS-BS-1-HS Wireless Handheld Display for Single Transmitters, or directly to the customer’s PC with the WTS-BS-6 Wireless Telemetry Dongle Base Station. Using this solution, a customer can monitor the loads lifted from their gantry crane with Interface’s Wireless Telemetry System and determine whether their gantry crane was able to manage lifting heavy loads.

Overall, force measurement provides valuable insights into the performance, safety, and reliability of heavy equipment, enabling designers, manufacturers, and operators to make informed decisions and ensure efficient and safe operation.

We have a wide range of solutions for the design and testing challenges of heavy equipment used for lifting, weighing, and measuring force and torque. Contact us for any help you need with heavy equipment solutions.

ADDITIONAL RESOURCES

Infrastructure Projects Rely on Interface

Lifting Solutions

Weighing Solutions Brochure

Heavy Truck Test and Measurement Solutions

Force Measurement Solutions for the Construction Industry

Bridge Construction Wind Monitoring

Solutions to Advance Agriculture Smart Farming and Equipment

Why Machine and Equipment Manufacturers Choose Interface

LIFTING: Lifting Heavy Objects

LIFTING: Crane Block Safety Check

LIFTING: Crane Force Regulation

Benefits of Proof Loading Verification

Proof loading is a critical test that is performed on sensors or load cells to verify their performance and accuracy under extreme conditions. Engineers may need to request proof loading verification to ensure that the sensors or other measuring devices being used in a particular application are accurate, reliable, and safe for use.

Upon request, Interface provides proof loading at the build phase of engineered-to-order load cells, as well as load pins, load shackles and tension links. By simple definition, proof loading is a safe overload rating for a sensor.

Load proofing is a special test that guarantees the sensor performs at maximum capacity before it’s released to the customer. If a manufacturer does proof loading, it will be documented in the sensors specifications that are shipped with the product. It is commonly requested for sensors that are used in lifting applications.

Additionally, quality engineers and testing professionals may request proof loading as part of quality control or compliance requirements. By ensuring that sensors and load cells are tested and validated before use, companies can ensure that they meet regulatory standards and maintain a high level of quality in their products and services.

The Proof Loading Process

By requesting proof loading, sensor users can verify the accuracy and reliability of sensors and load cells and ensure that they are functioning correctly and within their specified limits. Proof loading can also identify any issues or problems with sensors or load cells before they are put into service, allowing for repairs or replacements to be made if necessary.

Proof loading for sensors is a process of subjecting a sensor to a higher-than-normal load or stress to confirm that it can withstand that load or stress without any permanent damage or deviation from its calibration. The purpose of proof loading is to validate the accuracy and reliability of the sensor under extreme conditions, ensuring that it will perform correctly when it is in service.

During proof loading, the sensor is exposed to a controlled overload, typically between 150% to 200% of its maximum rated capacity. The sensor’s response to the load is monitored, and the output is compared to its expected behavior. If the sensor performs within acceptable limits and returns to its pre-loaded state after the load is removed, it is considered to have passed the proof load test.

When should you request proof loading for a load cell?

Proof loading for a load cell should be requested when there is a need to verify its calibration and ensure its accuracy and reliability under extreme conditions. This is particularly important when the load cell is used in safety-critical applications, such as in crane and hoist systems, industrial weighing and process control systems, and structural testing applications.

Proof loading is commonly used for sensors that are used in safety-critical applications, such as load cells used in cranes and hoists, pressure transducers used in oil and gas pipelines, and temperature sensors used in furnace applications. By performing proof loading tests, manufacturers and end-users can have greater confidence in the performance and reliability of their sensors, which can improve overall safety and efficiency.

In general, there are several situations where it is advisable to request proof loading for a load cell:

  • Before critical applications: In safety-critical applications, such as those involving lifting, handling, and transportation of heavy loads, a proof load test should be performed before the load cell is put into service to ensure that it can handle the required load without any issues.
  • After installation: It is recommended to perform a proof load test on the load cell immediately after installation to ensure that it is functioning correctly and within its specified limits.
  • After repair or maintenance: If the load cell has undergone repair or maintenance, a proof load test can be used to verify that it is still performing accurately and within its specifications.
  • After an extended period of non-use: If the load cell has not been used for an extended period, it may be necessary to perform a proof load test to ensure that it is still functioning correctly.

It is important to note that proof loading should only be performed by qualified and trained personnel using the appropriate equipment and procedures. This will ensure that the load cell is not damaged during the testing process and that it continues to perform accurately and reliably after the test is completed.

Proof loading is particularly important in safety-critical applications such as in the construction industry, transportation industry, and other industrial applications where lifting and handling heavy loads are involved. In these applications, the accuracy and reliability of sensors and load cells are crucial, as any inaccuracies or deviations from the expected behavior can result in dangerous and costly accidents.

Overall, proof loading is an essential test that engineers may need to request to ensure the safety and reliability of sensors and load cells in various industrial applications.

ADDITIONAL RESOURCES

IoT Lifting Heavy Objects

Cranes and Lifting

Recap of Use Cases for Load Pins Webinar

Tension Links 101

Aircraft Lifting Equipment App Note

 

Top Five Reasons Why Calibration Matters

Applied metrology is the measurement science developed in relation to manufacturing and other processes, ensuring the suitability of measurement instruments, their calibration, and quality control.

Calibration is the practice of evaluating and adjusting equipment to ensure precision and accuracy. Calibration for force measurement determines whether a sensor is working properly, as well if it needs repair or replacement.

Calibration is critical in the application of test and measurement because it provides controlled methods using equipment and systems that ensure reliability, accuracy, and quality.

We recently shared in our Accurate Report on Calibration seminar, the top five reasons why calibration matters. Below highlights each why.

#1 Reason Why Calibration Matters – Understanding Uncertainty

  • Measurement uncertainty is defined as an estimate of the range of measured values within which the true value lies or, alternatively, the degree of doubt about a measured value.
  • In every application, there will be an uncertainty requirement on the force measurement.
  • The equipment used to make the measurement must be traceable to a realization of the SI Newton unit of force within this required uncertainty.

#2 Reason Why Calibration Matters – Quality and Specifications

  • Calibration ensures the transducer is performing to listed specification.
  • It avoids costly impacts or escapes to manufactured goods and products.
  • Maintaining quality of manufactured device to original specifications is an important reason why calibration matters.
  • It certainly minimizes the cost of poor quality.

#3 Reason Why Calibration Matters – Minimize Downtime

  • Proactive maintenance will always take less time than reactive problem solving and repairs.
  • Identify and repair or replace system components before they fail through regular calibration.
  • Plan calibration intervals to minimize downtime, as a schedule is preventative maintenance.

#4 Reason Why Calibration Matters – Data Accuracy

  • All load cells are subject to potential performance degradation due to mistreatment or drift, impacting data integrity.
  • Pre and post test verification provide assurances in data validity.
  • Confidence in critical measurements is imperative.

#5 Reason Why Calibration Matters – Accreditation and Certifications

  • Calibrations provide adherence to quality management systems and requirements, especially ISO certifications and compliance.
  • It assures that measurements gathered within the valid calibration period are reliable, trustworthy, and defensible.
  • Traceability of measurement is guaranteed with certifications.

To start, every sensor Interface manufactures is calibrated and certified in our fully accredited calibration labs before it leaves our facilities. We do so under ISO 17025 standards with full NIST traceability for quality assurance. Annually, we provide more than 100,000 calibrations on force and torque measurement devices.

We also provide complete calibration services and repair on any sensor we make, as well as other manufacturer’s equipment. Our experienced calibration lab technicians offer a complete range of calibration services for load cells, torque transducers and other force measurement devices, including:

  • Scheduled Repairs for Ongoing Inventory Management
  • RMA Tracking and Permanent Archive of Test Data
  • Custom Calibration Services
  • Certification

Calibration is a necessity as any product can degrade, resulting in a decline in accuracy. Interface recommends every device go through a calibration service annually to maintain the integrity of the sensor performance. If you need assistance in scheduling a calibration service or requesting help, contact us here.

We also offer a range of calibration grade equipment for labs and to use for self-service calibration.  This includes our verification load frames, calibration systems, calibration grade load cells and lab instrumentation. Read Calibration Grade Load Cells and Systems and Additional Interface Calibration Grade Solutions to learn about these and other products.

ADDITIONAL RESOURCES

Recap of Accurate Report on Calibration

Interface Calibration 101

GS-SYS04 Gold Standard® Portable E4 Machine Calibration System

Shunt Calibration 101

Extending the Calibration Range of a Transducer

Calibration-and-Repair-Brochure-1