Posts

2022 Test and Measurement Industry Trends

Interface continues to experience significant growth in demand and fulfillment of our precision measurement products and services. Despite the ongoing challenges in supply and overall health and economic concerns, our focus has remained steadfast to serve customers with innovative solutions, facilitated requests for specialized engineering and production requests and expeditiously working to meet the delivery schedules aligned to our customers’ requirements.

As the overall T&M industry grew, so did the demand for engineers and manufacturers across all industries to have proven solutions from their test and measurement equipment, expanded capabilities from sensor technologies, as well as explore new ways of optimizing products with real-time, accurate measurement.

As we look ahead to 2022, we are also investing in new and existing trends and exploring how they will shape the overall market next year and beyond. To help prepare our customers, here are our predictions for the new year, along with what is hot and trending in force measurement. The following provides some insights from our experts on how Interface is prepared to address these trends, while continuing to serve our customers at the highest level of satisfaction. Here is Interface’s viewpoint on market trends and predictions for 2022 and beyond.

Big Data Continues to Rule Product Design and Test

Over the last few years, we’ve shared our view on the Industry 4.0 revolution and how Interface customers are demanding more data from their T&M tools to give exactness in accuracy and all-encompassing performance data at the earliest phases of product design. Not only will this continue, but it will expand rapidly. In the force measurement world, Interface has responded by serving our customers with new innovations in multi-axis sensors that provide more force data on more axis. Interface offers a wide variety of multi-axis sensors including 2, 3 and 6-axis sensors. We certainly anticipate a continued growth in demand for multi-axis sensors as our product line expands to meet the requirements.

In addition, Interface is seeing more requests from manufacturers and product designers to embed sensors and measurement capabilities within their products. To enable continuous improvements and advancements in smart manufacturing and product designs, sensors are being used to provide real-time feedback on machines, components, equipment, and consumer products. These sensors are often designed in or embedded into the OEM product to predict the health in each type of use case, as well as notify users when a repair or adjustment is needed for safety, user satisfaction, and controlled maintenance. In the manufacturing applications, this capability significantly reduces facility downtime. To meet this demand, Interface is investing in more automation capabilities within our own manufacturing facilities to produce high volume sensor solutions for OEM customers. This market is growing rapidly, and Interface is working hard to meet the needs of our customers that need our products in volume.

New Advancements in Strain Gages

Another trend that Interface is actively investing in is new strain gage technologies and manufacturing techniques to better serve the high-production and OEM markets. Interface uses proprietary strain gages for all products we manufacture. When OEMs are making high-volume product orders and need sensors that fit their exact needs without breaking their budget, Interface is ready to meet the demand. One of the ways that force sensor manufacturers can meet OEM cost needs is through innovation in strain gages, the heart of any measurement device. Interface deploys a team of resources to design and build custom strain gages when a unique solution is part of the design requirements. Interface has expanded our specialization and expertise in mechanical engineering, chemical engineering, and metallurgy to meet this specific trend and need. We are currently undergoing critical R&D to find new ways to develop these components and working directly with customers to meet their data requirements. Check out this post on strain gages.

Growing Demand for Wireless Solutions

Another trend that is continuing to gain momentum is the growing need for wireless measurement solutions. Wireless systems are helping manufacturers simplify the integration process and create a cleaner safer test environment with far less wiring. Wireless communication is also playing a major role in advanced manufacturing and smart products. By connecting systems wirelessly, users can monitor testing and in OEM applications, review the health of a system, from a central point. This includes for components used in the field, underwater or via remote locations for assembly and test.

These wireless systems also help improve accuracy significantly. Wireless technology has gotten to the point where we can receive more accurate readings when converting from an analog to a digital signal. This is especially important in highly complex and regulated industries like aerospace, energy, or medical. Wireless solutions will continue to grow, and Interface continues to develop new wireless total system solutions for our various product lines.

Faster, More Efficient Calibration Services

One of the most critical facets of working in manufacturing and technology is meeting the demands of our clients in an extremely timely manner. Innovation, advancements and testing demands slows down for no one, and our customers are no exception. This also requires regular maintenance and servicing of our devices. Interface recommends annual calibration services to ensure your force and torque measurement products are performing as designed. We understand they need our products and services fast. As part of our commitment to customers, Interface provides high quality calibration services that are key to long lasting and accurate force sensors. This service has grown rapidly alongside the force measurement industry and we’re receiving more re-calibration orders than ever before. To meet this demand, Interface is investing heavily in both people and technology to further expedite this process and meet our promise of expeditious turnaround times for calibration services. Read more about calibration here.

Complete Systems

Sometimes out-of-the-box meets the exact requirements, sometimes it’s in the box.  Interface continues to expand our product mix to include advanced instrumentation, accessories, sensors and unique housing for full systems due to growing demands. Our team of solution engineers partner with our customers to identify the specifications and understand the application to build completely custom solutions, from single sensors to complete systems. These systems can be used within lab testing environments or as remote testing solutions.  Learn more about the capabilities of our custom solutions team here.

These are just a few of the many trends occurring in test and measurement into 2022 and beyond. Technology is progressing at a rapid pace. Our customers need more data, that’s abundant and accurate. Our sensors are seeing new application and use cases, ranging from testing unmanned space vehicles to smart agriculture components.

Rest assured, Interface is deeply invested in addressing these trends and serving our customers in the new year and beyond with critical innovation. It’s what we’ve been doing since 1968. We see an abundance of opportunities and possibilities in working with our customers to get the best products for their projects, programs, and OEM products. Whether they need our standard, engineered-to-order, and custom solutions, we are here to serve and ready for 2022. How can we help you?

Additional Resources

Interface Multi-Axis Sensor Market Research

Interface All-In-One Custom Test Systems

Additional Interface Calibration Grade Solutions

 

Interface Calibration 101

Calibration of force and torque sensors is critical to receiving accurate data from measurement testing.  Calibration is the comparison of the instruments output against the known standard of measurement. For a load cell, it is the comparison of the load cell output against the standard test loads.

The calibration ensures the sensor is performing accurately and set for ideal output based on the capacity and configuration of the design. A standard calibration tests repeatability and linearity, which are both used to determine the accuracy. Calibration tests are run to identify any potential measurement errors caused by zero offset, non-linearity, hysteresis, non-repeatability, and shifts from zero.

The team of calibration experts at Interface are specifically trained to provide this specialized service as part of our quality and lab standard requirements of operations. Interface is ISO/IEC 17025:2017 and A2LA Accredited for Torque and Force Calibration in accordance with the recognized International Standard ISO/IEC 17025:2017.

Interface certifies all our load cells with accredited calibration before releasing the product for shipment. Certificate information includes tabulated measurement variables data, zero balance, computed nonlinearity and hysteresis, and traceability statements. We are often recognized as the most complete calibration certification in the industry

In a recent customer survey, we found that one of the most important roles that Interface force measurement solutions play is for our calibration services. This is due to the accuracy, reliability, and dependability over long periods of time of the load cells we manufacture and service.

Why Calibrate?

Calibration is important based on many different factors, including continued performance, safety, and compliance with ISO or industry specific standards. Interface’s standard recommended calibration interval is to recalibrate every 12 months. The frequency of calibrations should be determined by the following use case factors that may affect measurement accuracy:

  • Measurement quality and allowable tolerance range
  • Level of stress to which the equipment is subjected
  • Stability of past calibrations
  • Required measuring accuracy
  • Quality assurance requirements

Interface Calibration Services

Interface provides calibration and repair services on load cells and torque transducers, including devices made by other sensor manufacturers. In fact, Interface performs more than 100,000 calibrations every year. This includes new products as well as devices sent to Interface for recalibration and repair. Repairs include a complete evaluation of the device prior to repair and calibration upon completion.

In addition, here are some other benefits for choosing Interface as your calibration services partner:

  • ISO 17025 Accredited
  • Scheduled Repairs for Ongoing Inventory Management
  • Custom Calibration Services
  • RMA Tracking and Permanent Archive of Test Data
  • NMI Certified Gold and Platinum Standard Reference Load Cells
  • Interface Gold Standard Calibration Software Used for Data Collection and Analysis
  • Full-Service Machine Shop for any Mechanical Requirements

Calibration Services Process

The Interface calibration team consists of a team of professionals dedicated to an optimized calibration and repair process for timely management of our customer’s requests. We begin the calibration service process with our technical services group who manage the request and RMA process, in addition to evaluation and troubleshooting.

We evaluate all products at our headquarters with our team of experts. The sensor goes through a thorough inspection process to identify any necessary repairs and to ensure device is in working condition in preparation of a calibration. This includes an electrical test. Based on the extensive evaluation, if the device is found to be unrepairable, there is no charge. We also will work to find a replacement unit. All work beyond the evaluation is sent to the customer for approval.

The final step in our calibration services process is the actual calibration. Our calibration team is considered the most experienced in the industry due to the sheer volume of work product they calibrate every day.  Interface also is heavily invested in conducting all our calibrations with the most advanced equipment, including our proprietary Gold Standard® and Platinum Standard® systems. These machines ensure that the transducers are calibrated to the most accurate ability possible before returning to the customer.

Even the most high-end manufactured load cells and finely tuned components endure accuracy degradation over continued use. To ensure your sensors are always ready for peak performance, check out our calibration services request form. We also provide a full range of calibration grade products for metrology and testing labs. You can also give us a call at 480-948-5555 to discuss your specific calibration needs.

 

Force Solutions for Medical Tablet Forming Machines

In the medical and healthcare industry, accuracy is an absolute imperative in the devices used in every stage including diagnosis, surgery, health monitoring and even after care. This also applies to the specialized equipment used by pharmaceutical manufacturers, in both design and maintenance, when producing medicine and other healthcare related products.

When it comes to product development in the United States, not only do med devices and pharmaceuticals need to pass rigorous FDA regulations, but they must also be proven to serve patients and doctors safely. This results from robust test and measurement data requirements before seeking clearance. These same types of fundamental safety requirements of testing are also standard in most developed countries when seeking approvals before release.

Medical industry manufacturers turn to Interface because our force measurement solutions are designed for high performance test and measurement, in both accuracy and reliability. There is also a high demand for Interface’s ability to customize solutions to meet the exact requirements of these sensitive applications.

In a variety of medical device applications, one noted example is Interface’s role in providing various miniature beam and in-line load cell solutions with ten times the overload protection to protect against accidental shock loads. Our torque transducers provide rotary and reactive measurement to accurately track light movements required to control prosthetic fatigue testing, surgical equipment, knee or hip replacement and other medical devices. Other Interface solutions include multi-axis sensors for multiple channels of measurement in one housing. Read more about these types of medical applications here.

Interface provides force measurement solutions for a wide variety of products and machines that help biotechnology and pharmaceutical product engineers to design, test and manufacturer devices of all shapes and sizes. When it comes to equipment used in the manufacturing of medicine, Interface products are used to optimize production and reduce waste.

TABLET HARDNESS TESTING

In this application, a pharmaceutical tablet producer wanted to test and monitor the hardness of the tablets being created in their tablet forming machine. Interface’s SML Low Height S-Type Load Cell was mounted to the hardness device inside the tablet forming machine. The SML Low Height S-Type Load Cell was then connected to the 9870 High-Speed High Performance TEDS Ready Indicator to record the force measurements.

TABLET FORMING MACHINE OPTIMIZATION

For a tablet forming machine optimization project in Europe, a pharmaceutical tablet producer wanted to monitor the forces applied by the tablet forming machine in an effort to understand the relationship between raw material, die set, forming force, and motor cycle speed. The goal was to improve productivity and efficiency of the tablet forming process, while reducing losses such as cracked tablets or voids, by adding a dimension of feedback that could be used to assign specific press adjustment criterion for given inputs. An Interface Model WMC Sealed Stainless Steel Mini Load Cell 10K lbf was mounted in the section of the downward press bar. The machine was modified to accomplish this. The load cell was then connected to a Model 9320 Portable Load Cell Indicator to collect the needed data.

TABLET MACHINE HARDNESS CALIBRATION

Our partners in Germany also had the opportunity to work on a calibration project for a device that tested the hardness of tablets, such as a medicine in tablet form. The reason for this type of device is because medical tablets are overly sensitive to compression force when being formed and when ready to be shipped. If the tablets hardness isn’t tested properly, consistency in size and shape is nearly impossible. The need for force testing is because the device must provide very minimal and accurate forces to the tablet for product consistency. When this is applied to tablets that are used in medicine, accuracy in dosage is fundamental and an absolute necessity.

The customer required a unique solution to properly re-calibrate the device. They needed a mini-load cell the size of a sugar cube that replaces the tablets and fits horizontally in the tablet test-box. A special cable exit was also critical for the compression only calibration application.

Interface provided an MCC Miniature Compression Load Cell which can measure forces on its side with a special cable exit on the flat side that attaches to a calibration indicator, such as the Interface battery powered handheld indicator and datalogger Model 9330. The MCC load cell calibration set compares the applied forces with the hardness tester to make sure that the tablet hardness tester uses the correct force for future tablet hardness tests. The BlueDAQ software included in our indicator helps to log and compare the data of the MCC reference load cell.

In the past, the customer’s medical tablet machines had to be rebuilt for calibrations, or a complex mechanism had to be integrated to enable vertical calibration. With Interface’s new solution, the customer successfully verified and calibrated the tablet hardness tester machine horizontally to conduct accurate hardness testing on tablets in the future. Interface’s MCC Miniature Compression Load Cell was perfect due to its small size, and convenience in measuring the forces on its side.

Read more about these healthcare and medical applications in these posts:

Interface Solutions for Medical Devices and Healthcare

Interface Load Cells in Medical Applications

Interface Ensures Premium Accuracy and Reliability for Medical Applications

To see more of Interface’s solutions designed for the medical device industry, visit our solutions page at www.interfaceforce.com/solutions/medical-healthcare/.

Faces of Interface Featuring Jeff Boyd


Interface Regional Sales Director Jeffrey Boyd has a long history in the force measurement industry and is an incredible addition to the Interface sales team. You see, force measurement runs in Jeff’s blood!

Jeff originally got into the industry because he watched and listened to his dad talk about his experience at another force measurement manufacturer, Sensor Development. In fact, his dad actually helped start the company when he joined the owner shortly after the company was founded. You could say that Jeff was somewhat groomed for success in this field.

To prepare for his destined career, Jeff spent a few years at Oakland University. After that, he quickly joined up with his dad at Sensor Development. Jeff started in the calibration department, learning the ins and outs of strain gages, load cells, torque sensors and everything in between. After a few years, he was leading both the calibration services and customer service department. Jeff was in charge of ensuring customer satisfaction when products came in for repair, service or calibration.

After several years getting hands on with the products and developing critical expertise in the various sensors the company sold, Jeff decided it was time to transition into a sales role. He originally began as a sales engineer helping to develop customer quotes and working directly with the engineering department on custom applications. His success in sales lead him to become a regional sales manager in 2014.

From 2014 to 2017, Jeff served as regional sales manager for Sensor Development until it was bought out by HITEC Sensors and was renamed to HITEC Sensors Development. Jeff remained with HITEC for another four years before it was time for exploring new opportunities.

Due to his experience in the industry, Jeff was familiar with the Interface brand and our product’s reputation for quality and accuracy. Right about the time Jeff’s time with HITEC was coming to end, Interface had an opening for a Regional Sales Position due to Keith Skidmore‘s promotion to our specialized Custom Solutions team.

Jeff joined Interface in the Spring of 2021 and is a perfect fit, technically and professionally. Not only because of Jeff’s years of experience, also because he continues to live in Michigan and will be covering Interface’s Central U.S. region working with our manufacturer’s representative firm, Stress Analysis Services. He’ll be working with our sales reps, including John Guy, and our customers to ensure they get exactly what they require from Interface. He knows the area and knows the needs of the industry well.

As for why Jeff chose Interface, he says it’s because of the people. Throughout the interview process and during these first few weeks, Jeff mentioned how supportive and friendly his teammates and the leaders of the company are working to ensure his success. He also sees the trajectory that Interface is currently on and knows that he will have an opportunity to grow and thrive alongside Interface.

When he’s not helping customers find the perfect product or customer solution for their test and measurement needs, Jeff is spending time with his wife and his five grown sons and granddaughter. Living through the cold Michigan winters make vacationing to the warmth a must. Jeff and his wife frequently travel to Las Vegas and Arizona or any other warm state to escape. Though, they also like to spend some of their time cheering on their favorite football teams. Notably, the household is a bit divided when it’s game time. Jeff is also an avid golfer and spends a lot of his down time on the course.

We’re so glad to have Jeff on our team as our new ForceLeaders member and we can’t wait to see what we’ll achieve together in interest of our valued Interface customers.

The Role of Actuators in Force Measurement

One of the most common force measurement tests in the engineering and manufacturing world is called cycle testing. Cycle testing involves constant force being applied to a component or product over hours, days and even months. The goal is to test a product to find out how long it will last under the amount of force it will see in use in the real world.

Cycle testing is used throughout different industries. One of the most common applications of a cycle test is on something like airplane wings. The wings of an airplane are exposed to constant push and pull force to guarantee that they will hold up over many flights. Check out the wing fatigue testing application note here.

Another example is simple furniture tests, like a chair, to ensure it can withstand the weight of people of all sizes after years and years of use. These tests are designed to really push the limits on the product so engineers and manufacturers can confirm their designs and ensure safety and durability.

To carry out these tests, actuators are used to generate the force in cycle testing. An actuator is a component responsible for moving and controlling a mechanism or system. Actuators are small components that convert energy in a linear moment. There are a variety of different types of actuators including linear, rotary, hydraulic, pneumatic, and more. Each is designed to create force in different directions and on different axes.

Actuators are very important because force measurement is fed back into a control loop and the actuator allows you to accurately control how much force you’re putting on a test article. As a basic example, if you wanted to measure how much force it takes to close a door, you would use an actuator to provide the door closing force while the load cell measures the amount of force given off by the actuator.

Interface often integrates actuators into load cells for custom solutions to use in rigorous use and cycle testing. These types of custom solutions are used by equipment and product manufacturers, OEMs, as well as product design and testing labs. There is increasing frequency for OEMs to integrate actuators into load cells for testing their automated testing lines or products in use for continuous feedback.

For example, mobile device manufacturers use a miniature–sized load button load cell like the ConvexBT to test the pressure sensitivity of the touch screen. By using an actuator, phone manufacturers can set up an automated test lines with an actuator integrated in the load button load cell to test each screen as they go across a test line. You can read more about ConvexBT in this new white paper.

Another major application for actuators is in calibration machines. To test if a load cell is calibrated correctly, an actuator applies force to the load cell being tested and a calibration grade Gold Standard Load Cell simultaneously. These measurements can tell the user if the load cell needs to be recalibrated or not because the actuator allows the user to create a very precise force measurement. If measurements on the test load cell are not the same as the control load cell, the user knows it is off calibration and it’s time to schedule a calibration service.

From custom solutions to calibration, if actuators are necessary for your next project learn how Interface can work with you to find a solution that meets your precise needs.

Read more about Gold Standard Calibration Systems here.

Learn about how Interface is a preferred provider of OEM solutions here.

Making the Case for Custom Solutions Webinar Recap

Interface application experts and custom solution pros, Ken Bishop and Keith Skidmore provided valuable insights in our latest virtual event as to how, when, and why, you should connect with our team for help in designing, engineering, and building custom sensor solutions.

Making the Case for Custom Solutions, an Interface ForceLeaders hosted webinar, delved into the scope of options across all types of technologies and devices used in test and measurement. The focus of the event highlighted the importance of early engagement in the design and conception process when evaluating whether you needed something beyond a standard product.

Custom Solutions go beyond engineered to order products, where you might need to change a thread adapter, connector, or mounting hole. Interface custom solution can range from single components designed for unique applications to multiple components configured as a system. Custom solutions are most frequently used for OEM products, as embedded pieces.

Interface offers fully designed load cells or load pins to meet the application requirements. Torque transducers‘ options include custom shaft sizes, outputs, temperature ranges, and other configurations to fit the application. Wireless is also a common consideration for custom solutions, giving a wider use for monitoring, reporting, and system support.

If we build it, we can customize it. This also applies to multi-axis sensors and various types of instrumentation. In the webinar, Keith and Ken dive into several systems and use cases that highlight multiple components configured to exact specifications from mobile force testing systems to monitoring bridges seismic activity with special waterproof casings.

Six Custom Solution Design and Specification Recommendations for Getting Started

  1. What do you want to measure?
  2. How will the sensor be used?
  3. Do you need multiple sensors or a single device?
  4. Is this embedded into an OEM application or solely for test and measurement?
  5. Do you have a cost target?
  6. How will you read the results?

The mechanics of getting something custom starts with the scope and determining what needs to be measured. Then our experienced engineers will design the product working with your team. Once designs are approved, the manufacturing process begins. Using our state-of-the-art machine shop world-class assembly and custom solution calibration experts, Interface confidently delivers the products that stand with our seal of quality, accuracy, and performance standards.

Here are the topics discussed in the Making the Case for Custom Solutions event.

  • What is Considered an Interface Custom Solution
  • Differences Between Engineered to Order and Custom
  • Design and Specification Recommendations
  • Customizations Options and Considerations
  • Building Systems
  • Tips for Engaging Custom Solutions Engineers
  • The World of Possibilities
  • FAQs

Watch the entire event here:

The benefits of engaging Interface Custom Solutions Engineers are that we become an extension of your engineering resources along with access to our models, drawings, and assets to help with your project success. Whether we are building solutions with our proprietary strain gages or finding Bluetooth instrumentation for read-outs on custom load cells, we work as your partner with ownership in your project’s success.  It’s what we know, it’s what we do, and we get custom solutions. We’ve been doing custom solutions for force and torque for 52 years.

When you are ready to engage our team, we stand ready to help. We’ve been building small and large volume custom solutions for innovative industry leaders in aerospace, industrial automation, automotive, agriculture, infrastructure, energy, and more.  In Making the Case for Custom Solutions, Keith and Ken Put our experts to the test and let’s explore the possibilities together.

Get started by letting us know what you have in mind.  Request a custom solution here.

Read more in our What’s New in Custom Solutions post.

Additional Events:

Use Cases for Load Pins

Load Cell Basics

 

Load Cell Basics Webinar Recap

Interface applications and load cell expert Keith Skidmore was the featured presenter at the latest ForceLeaders Forum hosted event, Load Cell Basics. In his comprehensive presentation, he highlights key subjects including fundamentals of load cell design, sensor specifications, use cases, troubleshooting and valuable performance related topics.

The entire event is now available on the Interface YouTube channel.

In this 60-minute virtual event, Keith highlights commonly asked questions from both new load cell users as well as for advanced engineers and force measurement pros.

What will you learn watching the online Load Cells Basics event?

  • Load cell designs and how they work
  • Capacities, models and how to choose the right load cell
  • Factors that can impact sensor accuracy
  • Performance, moment compensation, creep, and eccentric load sensitivity
  • Calibration and troubleshooting
  • Use Cases and FAQs

The team concluded the event by answering a series of questions from the participants. They addressed advanced technical and set-up questions, as well as frequently asked inquiries about common troubleshooting issues.

Here is a sample of questions that you can find answered in the Load Cell Basics recorded event:

  • Is the temperature compensation achieved using dummy gauges?
  • Does Interface offer or have their own software to read the TEDs?
  • Can we assume that all load cells are intrinsically safe for hazardous locations?
  • What is the IP protection rating for the electrical connection?
  • What is better way to tare load cells, by electronics or mechanical preload?
  • Which is the frequency measurement limit and how fast does the load cell respond?
  • What are recommended amplifier instrumentation brands?
  • What is the most frequent problem when installing a load cell?
  • Does the cables and amplifiers affect the results of the load cell calibration?
  • For an application to 10 kN (2250 lbf), is it too much to use a 2000 lb load cell or should we use the next higher capacity?
  • What is the maximum sampling frequency for strain gage load cells?

WATCH THE EVENT AND Q&A HERE: https://youtu.be/_oHvfAzHMig

If you have additional technical questions or would like to talk about your specific application requirements, contact our Interface Application Engineers here. 

Additional resources for troubleshooting can be found here.

Our Interface Load Cell Field Guide is also helpful for troubleshooting and advanced technical support references.  You can order here.

Trending at Interface

As in years past, the Interface team looks at trends in what products caught the greatest interest of our customers, along with those that are top sellers throughout the year.

We’ve gathered our key findings based on searches and purchases by industry-leading engineers, product designers, testing labs, manufacturers and T&M pros using Interface solutions. Here is a summary of the trends over the past 12 months.

TRENDING PRODUCT CATEGORES IN 2020

#1 LOAD CELLS – There is no surprise that topping the 2020 list is what we are best known for, our precision load cells. When quality, accuracy, and reliability matter Interface Models 1000, 1100, 1500 and 1600 in various capacities ranked highest in interest. What’s the top seller? The 1200 Standard Precision LowProfile® Load Cell ranks number one, with the 1000 Fatigue Rated Load Cell in second place.

#2 TORQUE TRANSDUCERS – Torque is definitely trending, taking the number two spot. Hot picks are the MRT Miniature Flange Style Reaction Torque Transducer, T8, T25 and our proprietary AxialTQ. Read Torque 101 here.

#3 INSTRUMENTATION – One of the most popular adds to any purchase is instrumentation like the DMA2, SGA, 9320 or 9840.

#4 MULTI-AXIS SENSORS – Watch Dimensions of Multi-Axis Sensors to learn more about why multi-axis is trending, including the popular 3AXX 3-Axis Force Load Cell.

#5 MINIATURE LOAD CELLS – Interface’s expertise for engineering force measurement applies to a wide range of capacities and sizes, including Interface Mini best sellers: SSM and SSM2 Sealed S-Type Load Cells, SM-S Type and SMT Miniature Load Cells followed closely by MB, MBP, WMC Stainless Steel Miniature Load Cell and SMTM models.

#6 CALIBRATION SYSTEMS – These Interface systems are growing in popularity. Read why here.

#7 CALIBRATION SERVICES AND REPAIR ­­­– Our customers can depend on us for our services. Click here to request service today.

#8 DIGITAL INSTRUMENTATION – Interface has expanded our line of digital instrumentation based on growing demands. See what’s hot here, like our BX8.

#9 LOAD PINS, LOAD SHACKLES AND TENSION LINKS – A new entry to the trends list this year based on the high interest for these specialty products including the wireless options.

#10 LOAD BUTTON LOAD CELLS – Robotics, automation and testing in confined and compact spaces has raised greater interest in highly-accurate load button load cells, including our new ConvexBT and our popular LBM and LBS models.

Based on feedback and our analysis of trends, we know that getting exactly what you want is as important as the product category selection. Engineered to order, custom solutions and complete systems are rapidly growing in demand as Interface customers evaluate ways to embed sensor technologies into products or utilize advances sensor technologies, along with wireless and Bluetooth communication capabilities.

Take a look at why Interface Engineered to Order Solutions continue to be in high demand by helping our customers get exactly what they need.

Interface has played an important role in shaping the test and measurement industry and though we know our standard catalog is robust, we are always here to get the exact product for our customer’s exact requirements. How can we help you get what you want in 2021 and beyond?  Reach out and let’s start the conversation now.

Load Cell Test Protocols and Calibrations

In the Interface Load Cell Field Guide, our engineers and product design experts detail important troubleshooting tips and best practices to help test and measurement professionals understand the intricacies of load cells and applications for force measurement devices. In this post, our team has outlined some helpful advice for testing protocols, error sourcing and calibrations.

The first step in creating test protocols and calibration use cases is to define the mode you are testing. Load cells are routinely conditioned in either tension or compression mode and then calibrated. If a calibration in the opposite mode is also required, the cell is first conditioned in that mode prior to the second calibration. The calibration data reflects the operation of the cell only when it is conditioned in the mode in question.

For this reason, it is important that the test protocol, which is the sequence of the load applications, must be planned before any determination of possible error sources can begin. In most instances, a specification of acceptance must be devised to ensure that the requirements of the load cell user are met.

Typical error sources in force test and measurement are usually identified as being related to:

  • Lack of protocol
  • Replication of actual use case
  • Conditioning
  • Alignment
  • Adapters
  • Cables
  • Instrumentation
  • Threads and loading
  • Temperature
  • Excitation voltage
  • Bolting
  • Materials

In very stringent applications, users generally can correct test data for nonlinearity of the load cell, removing a substantial amount of the total error.  If this can’t be done, nonlinearity will be part of the error budget.

An error budget is the maximum amount of time that a technical system can fail without service level consequences. In force test and measurement, it is sometimes referred to as uncertainty budget.

Nonlinearity is the algebraic difference between output at a specific load and the corresponding point on the straight line drawn between minimum load and maximum load.

Nonrepeatability is essentially a function of the resolution and stability of the signal conditioning electronics.  Load cells typically have nonrepeatability that is better than the load frames, fixtures and electronics used to measure it.

Nonrepeatabillty is the maximum difference between output readings for repeating loading under identical loading and environmental conditions.

The remaining source of error, hysteresis, is highly dependent on the load sequence test protocol.  It is possible to optimize the test protocol in most cases, to minimize the introduction of unwanted hysteresis into the measurements.

Hysteresis is the algebraic differences between output at a given load descending from maximum load and output at the same load ascending from minimum load.

There are cases when users are constrained, either by requirement or product specification, to operate a load cell in an undefined way that will result in unknown hysteresis effects. In such instances, the user will have to accept the worst-case hysteresis as an operating specification.

Some load cells must be operated in both tension and compression mode during their normal use cycle, without the ability to recondition the cell before changing modes. This results in a condition called toggle, a non-return to zero after looping through both modes. The magnitude of toggle is a broad range. There are several solutions to the toggle problem, including using a higher capacity load cell so that it can operate over a smaller range of its capacity, use a cell made from a lower toggle material or require a tighter specification.

ONLINE RESOURCE: INTERFACE TECHNICAL INFORMATION

For questions about testing protocols, conditioning, or calibration, contact our technical experts. If you need calibration services, we are here and ready to help.  Click here to request a calibration or repair service today.