Posts

How Load Cells Can Go Bad

Load cells are electronic devices that measure the force applied to them. Interface products are made to last, in fact we have many load cells that are in-market and being used for high-accuracy testing that were manufactured decades ago. Why do they last? Quality of design, material construction, build process, calibration, and regular maintenance prolong the life of a load cell.

Like any electronic device, load cells can go bad for a few reasons. It is also important to know that load cells can be repaired. Outside of complete destructive testing, the following issues are most common for how load cell can go bad.

Overloading: Load cells have a maximum capacity, and if they are subjected to a force beyond that limit, they can get damaged. Overloading can cause the load cell to deform or break, resulting in inaccurate readings or complete failure. Preventative options are to use overload protected load cells.

Mechanical and physical damage: Load cells are sensitive devices and can be damaged by impact, vibration, or shock. Mechanical damage can cause the load cell to deform or lose its calibration, resulting in inaccurate readings. Physical damage to devices is often because the load cells are dropped or mishandled during use.

Moisture: Load cells are often used in damp or wet environments, and prolonged exposure to moisture can cause corrosion or damage to the internal circuitry. Environmental exposure to moisture can also cause electrical shorts or create a conductive path between the components, resulting in inaccurate readings or complete failure. Review submersible options if testing in these environments is common.

Temperature: Load cells can be sensitive to temperature changes, and extreme temperatures can cause damage to the internal components. Thermal expansion or contraction can cause mechanical stress, resulting in deformation or damage to the load cell. Interface offers high-temperature and low-temperature load cells options.

Electrical noise: Load cells are susceptible to electrical noise, which can cause interference in the signals and result in inaccurate readings. Electrical noise can be caused by electromagnetic interference (EMI), radio-frequency interference (RFI), or other sources of electrical interference.

Aging: Not all load cells are made the same way. Interface load cells are designed to outlast any testing use for long-periods, we are talking millions of cycles. However, some load cells can wear out over time due to repeated use, exposure to the environment, or other factors. Aging can cause a decrease in sensitivity, accuracy, or stability, resulting in inaccurate readings or complete failure. All load cells need good health checks to stay working at optimal performance.

To avoid load cell failures, it is important to use them within their rated capacity, protect them from mechanical damage, and provide adequate protection from moisture, temperature, and electrical noise. Regular maintenance and calibration services, preferably every year, can also help ensure accurate and reliable performance over time.

What is the best way to determine if a load cell is bad or not working?

There are several ways to determine if a load cell is bad or not working. Here is a reminder of five quick checks:

#1 Visual Inspection: Start by visually inspecting the load cell for any signs of physical damage, such as cracks, deformations, or loose connections. Check for any corrosion or signs of moisture, as well as any visible wear and tear.

#2 Zero Balance Testing: A zero balance test is a quick and straightforward way to check if a load cell is functioning properly. With no weight applied, the load cell should read zero. If it does not, there may be an issue with the load cell or its connections.

#3 Load Testing: Load testing involves applying a known weight to the load cell and checking the reading. If the load cell is accurate, the reading should match the known weight. If there is a significant discrepancy, the load cell may be faulty.

#4 Bridge Resistance Tests: Load cells are typically constructed with a Wheatstone bridge circuit, which can be assessed for proper resistance values. If there is a significant deviation from the expected resistance values, there may be an issue with the load cell or its connections.

#5 Temperature Tests: Load cells can be sensitive to temperature changes, and extreme temperatures can cause damage to the internal components. Evaluating the load cell at different temperatures can help to identify any issues with temperature sensitivity.

Interface provides complete evaluations of any product we manufacture, to determine if the load cell is working properly. To request services, go here.

How does calibration help load cells from going bad?

Calibration is the process of adjusting a load cell to ensure its accuracy and reliability in measuring weight or force. Regular calibration is essential for maintaining the accuracy and reliability of load cells. Interface recommends annual calibration services as a preventative measure and for good maintenance of your force measurement devices.

Calibration helps to ensure that a load cell provides accurate and consistent readings. Over time, load cells can drift from their initial calibration due to environmental factors, wear and tear, and other factors. Regular calibration ensures that any deviations from the standard are detected and corrected, preventing inaccurate readings that can lead to errors in weighing and other measurements.

Load cells that are not calibrated regularly may experience premature wear and tear due to repeated use, leading to damage or failure. Calibration helps to identify any issues early on and prevent further damage, extending the lifespan of the load cell and saving on replacement costs.

Many industries and applications have strict standards and regulations for measuring weight and force. Regular calibration helps to ensure that load cells meet these standards and regulations.

Regular calibration can help load cells from going bad in multiple ways. It can help to prevent inaccurate readings, extend the lifespan of load cells, improve efficiency, and ensure compliance with standards and regulations. Accurate measurements are critical, and calibration helps to ensure that load cells is working properly. Request a repair or calibration service online.

ADDITIONAL SERVICES

Load Cell 101 and What You Need to Know

Load Cell Sensitivity 101

Can Load Cells Be Repaired?

Services & Repair

Mechanical Installation Load Cell Troubleshooting 101

How Do Load Cells Work?

Regular Calibration Service Maintains Load Cell Accuracy

Load Cell Sensitivity 101

Load cell sensitivity refers to the relationship between the input force applied to a load cell and the output signal it generates. It is a measure of the load cell’s responsiveness to changes in the applied force and is expressed in units of mV/V (millivolts per volt) or micro-volts per volt.

When determining the accuracy of a load cell, load cell sensitivity is an important parameter. A higher sensitivity means that even small changes in the applied force will result in a larger change in the output signal, making the load cell more sensitive and accurate.

It is critical to understand that load cell sensitivity and accuracy are closely related. A high sensitivity load cell will generate a larger output signal for the same applied force, which can increase the accuracy of the measurement. In general, the accuracy of a load cell is a combination of its sensitivity and the quality of its design and construction. Interface specializes in precision accuracy, which is important when considering the use case for your load cell.  As defined by the specifications, a high-quality load cell with appropriate sensitivity will provide accurate and consistent measurements, while a load cell with low sensitivity or poor quality may provide less accurate measurements.

Most load cells are designed to measure force in one certain direction, which is determined by the way the load cell is mounted. Inappropriate loading will cause side and eccentric load, which risks reducing the life of load cells and distorting measurement results.

Eccentric load sensitivity is measured by eccentric load, which is any load applied parallel to but not concentric with the primary axis. Side load is any load at the point of axial load application at 90 degrees to the primary axis.

To achieve a desired level of accuracy, it is important to choose a load cell with the appropriate sensitivity for the application. Load cell sensitivity can be affected by factors such as temperature, temperature gradients, and environmental conditions, so it is important to take these factors into account when selecting a load cell.

What conditions impact load cell sensitivity? Load cell sensitivity can be impacted by several factors, including:

  • Temperature: Changes in temperature can cause thermal expansion or contraction of the load cell material, affecting the output signal and reducing accuracy.
  • Temperature gradients: The presence of temperature gradients within the load cell can cause differential expansion or contraction of different parts of the load cell, further affecting the output signal and reducing accuracy.
  • Environmental conditions: Exposure to harsh environments, such as moisture, vibration, and shock, can cause damage or degradation to the load cell, reducing its sensitivity and accuracy.
  • Load cell orientation: The orientation of the load cell can impact the output signal, especially in applications where the load is applied at an angle.
  • Mechanical stresses: The presence of mechanical stresses, such as bending or twisting, can affect the output signal and reduce accuracy.
  • Aging: Over time, the load cell may experience degradation or wear and tear, reducing its sensitivity and accuracy. This is where regular calibration plays a role in the lifetime of your load cell.

It is important to consider these factors when selecting a load cell and to properly maintain and calibrate the load cell to ensure optimal sensitivity and accuracy over time.

Calibration is a process that involves adjusting the output signal of a load cell to ensure that it accurately reflects the applied force. Calibration improves load cell sensitivity by correcting for any errors or inaccuracies in the output signal, ensuring that the load cell provides accurate and consistent readings over time.

During calibration, a series of known loads are applied to the load cell, and the corresponding output signals are measured. These measurements are used to create a calibration curve that represents the relationship between the applied force and the output signal.

Calibration helps to correct for various factors that can affect load cell sensitivity, such as temperature, environmental conditions, and mechanical stresses. By adjusting the output signal to accurately reflect the applied force, calibration helps to ensure that the load cell provides accurate and consistent readings, even in challenging conditions. Interface recommends calibration of every load cell at least once a year for regular sensitivity maintenance.

Interface engineers design high accuracy, quality load cells with appropriate sensitivity that provides accurate and consistent measurements. It is important to consider both sensitivity and accuracy when selecting a load cell for an application and to regularly calibrate the load cell to ensure that it continues to provide accurate and reliable measurements over time.

Can Load Cells Be Repaired?

Load cells are very resilient. Most are constructed with sturdy materials that can withstand long and arduous cycling and multitudes of testing projects. In fact, with proper treatment, regular calibration services and use within specifications, load cells can last many years. Even with such high quality and durability, it is important to perform regular diagnostic checks of a load cell to maintain the health of any force measurement device.

FACT: Interface has load cells that are in use today that we manufactured several decades ago. As the saying goes, Interface load cells are built to last.

A load cell can be damaged or lose accuracy. Load cells can be repaired depending on the extent of damage. Some common issues such as cable damage, electrical faults, or environmental factors can be repaired by replacing parts or recalibrating the load cell. However, more severe damage such as physical damage to the load cell itself may make it beyond repair and require replacement.

What is the most common type of damage to a load cell?

Most often, a load cell is damaged by overloading or exceeding its rated capacity. This can result in physical deformation or strain on the load cell, leading to permanent damage and reduced accuracy.

Other common causes of damage to load cells include exposure to harsh environmental conditions such as extreme temperatures, moisture, or corrosive substances, as well as electrical faults such as voltage spikes or short circuits. Additionally, mechanical stress from improper installation or handling can also cause damage to load cells.

What steps should be taken to evaluate a load cell that might be damaged?

  • Visual Inspection: Ensure that the physical installation, correct interconnection of components and the system are all intact. For example, has the load cell been dropped or have any damage to connectors or adapters? Reference the installation and operation manuals available with each product.
  • Electrical Testing: Use an Ohmmeter to check the bridge circuitry and zero balance. Evaluate the resistance and output of the load cell. If there is a notable change in resistance or output, it may indicate that the load cell is damaged. This is also a good time to check the troubleshooting guide.
  • Test Loads: Apply a range of test loads to the load cell and observe if the readings are consistent and within the expected range.
  • Calibration: If the load cell is not functioning correctly, recalibrate it using a weight calibration system or load cell calibrator to see if the readings are within the expected range.
  • Professional Evaluation: Request a thorough inspection of the device to determine the load cell can be repaired or needs to be replaced.

It is important to follow safety protocols and to use proper equipment and techniques when evaluating a load cell to avoid causing additional damage.

After a thorough physical inspection along with mechanical and electrical installation checks, it is determined that a load cell is not performing to specifications it is time to contact the manufacturer for Services & Repair to schedule a return of the product for further evaluation and potential load cell repair.

Use Cases for Frequent Calibration Services and Repair Evaluations

  • Harsh environmental conditions can cause corrosion and electrical failures
  • Loading forces that exceed the load cell rated capacity can cause shifting of the zero-load output of the load cell
  • Moment loading of the load cell can cause zero shifts and other undesirable behavior
  • High cycle rates or fatigue applications can cause premature failure

Many of these symptoms can be repaired or mitigated if they are identified early during appropriate evaluation and calibration cycles. In addition, load cells are prone to losing accuracy through normal wear and tear and ageing. There are times when loading conditions and use case environments necessitate the need for more frequent evaluation and calibration cycles. The process of calibration can include adjusting the measuring instrument to bring it in alignment with the standard specifications.

It is always recommended that users consult an application engineer or user’s manual to avoid situations where a load cell can be damaged or degrade accuracy too quickly. Interface has deeps expertise in repair and calibration, built and proven over 55 years in the business of making and calibrating load cells.

Interface provides repair evaluation and services on load cells we make and from other manufacturers. Repairs include a complete evaluation of the device prior to repair and calibration upon completion. Our standards for calibration are world-class. Our calibration labs are managed by experts in diagnostics, testing and repair with engineering and metrology grade equipment designed by the leaders in force measurement.

If you’re already a load cell user and have not had your products calibrated in some time, we recommend scheduling your calibration service online here. Load cells can provide years and years of quality data as long as they are properly taken care of. Put your trust In Interface to make that happen.

Additional Resources

Services & Repair

Mechanical Installation Load Cell Troubleshooting 101

How Do Load Cells Work?

Regular Calibration Service Maintains Load Cell Accuracy

System Level Calibration Validates Accuracy and Performance

 

Metrologists and Calibration Technicians 101

Interface works with metrologists and calibration technicians worldwide. We are a partner, supplier of calibration grade products they use, and participants in research to advance the science of measurement. We are also proud team members with experienced experts in measurement, including our esteemed force measurement engineers and calibration technicians at Interface.

By simple definition, a metrologist is a scientist who researches and applies the science of measurement. Working in the field of metrology, they often create processes and engineer tools and systems used to measure objects, such as load cell calibration tools used to accurately to measure applied force.

Engineers and technicians work in collaboration with metrologists in the design of products and devices used for measuring objects. Metrologists are keen to maintain the accuracy standards of measurements for organizations, product makers, and manufacturers of measurement devices.

Metrologists practice their expertise in test and measurement at manufacturing facilities, corporate R&D centers, independent test and calibration labs, government entities and standards organizations, as well as at higher learning institutions. The range of industries that utilize metrologists spans from aerospace to medical sciences. It is commonplace for metrologists to participate in research, product design, testing, and repair of equipment.

To preserve accuracy of performance and standards of measurement, metrologists develop calibration procedures to control performance of devices. They use these techniques to also identify enhancements and continuous improvement initiatives. Metrology professionals often share their findings with metrologist groups and associations, for purposes of scientific research and development within the field of measurement science. NIST publishes reports related to metrology from contributors around the world. You can find thousands of reports here.

Calibration technicians calibrate test and measurement equipment, as well as provide quality inspection, installation, troubleshooting support, and regular maintenance. Cal techs operate the machines used to validate performance, then report on the findings.

A calibration technician can work in production or manufacturing environments, onsite calibration labs, or for independent labs that provide services to users and makers of measurement devices. It is quite common to find calibration labs staffed with experience technicians as a part of a manufacturer’s facility, across most industries. Depending on the size of the manufacturer, this could include a small in-house lab or multiple lab sites. These labs are stocked with a variety of sensors, rigs, machines, and tools. As noted by many of our representative firms and onsite customer visits, they often will find shelves of blue load cells ready for use at any time for test and measurement projects and calibration services.

Interface supplies calibration labs with all types of measurement calibration grade transducers and equipment, including:

Calibration technicians work with various testing and calibrating tools and technologies. The role requires a mix of expertise in the science and application of measurement. Interface has multiple onsite calibration labs with full testing rigs, machines, operating tools, instrumentation, and software used for tracking performance. Interface does calibrate every product we manufacture, to certify performance prior to releasing to the customer.

Interface Services Calibration Technicians operate within our Services Calibration and Repair Department at our Interface production facilities in Arizona. They provide services for Interface products for annual and regular calibration check-ups, as well as diagnostic, repair, and warranty evaluations. Interface recommends annual calibration services. If you need to schedule a service, go here.

Technicians perform calibrations and any additional needed services for customer owned equipment, works with quality and inspection managers to maintain the proper records within the services process application. They ensure that the measurements taken with our equipment are accurate. Interface calibration techs work on multiple shifts for a 24/6 operation. Interface is adding qualified technicians to our team to meet the demands in production and services.

Calibration technicians perform inspection, testing and validation to ensure conformance to established accuracy and calibration standards. They also help to create calibration procedures and help n sourcing errors or quality issues reported during calibration activities.

Requirements for Interface Calibration Technicians include:

  • Perform basic to mid-range diagnostics of force measurement equipment
  • Work collaboratively in a team environment to complete discrete tasks
  • Print and Review Calibration Certificates Competencies
  • Able to use fine motor skills to calibrate product
  • Able to work with hand and power tools, lifts, electronic test equipment, soldering and indicators
  • Understands industry and quality concepts and standards such as ISO, A2LA, NIST
  • Offers suggestions and improvements as they see them
  • Organize and schedule work in progress
  • Experience in calibration technology, science, engineering, or a related field

You can apply for positions Interface Calibration Technician jobs here.

For metrologists and calibration technicians, quality and control require strict adherence to ensure that the products and equipment are performing properly. As measurement is exact, both are responsible for performing routine audits and quality inspections to maintain compliance with good calibration practices.

ADDITIONAL RESOURCES

Regular Calibration Service Maintains Load Cell Accuracy

Top Five Reasons Why Calibration Matters

Shunt Calibration 101

Extending Transducer Calibration Range by Extrapolation

Strain Gage Design Under Eccentric Load WRSGC Presentation

Specifying Accuracy Requirements When Selecting Load Cells

 

System Level Calibration Validates Accuracy and Performance

Interface strongly recommends when buying any force measurement sensor along with instrumentation that you request a system level calibration. The final step taken to confirm that a sensor and instrumentation are working properly together before leaving Interface is a system level calibration.

System level calibrations provide traceability and record for reference for validating performance and accuracy. It is important to review calibration certificates prior to use and for any troubleshooting. System level calibrations ensure that all system components, including connectors, cables, transducers, and instrumentation are ready to use out of the box.

Interface provides calibration to all individual force measurement components. A basic calibration for the load cell is performed and certified of how the transducer performs in isolation. Expert Interface Calibration Technicians always calibrate these devices to meet the design specification and the exact parameters outlined in the accompanying calibration certifications shipped with the part. A calibration certification characterizes the load cell performance across specific force range with different load points applied output from the load cell versus applied load, confirmed by the specification in voltage outputs, milliamps, or digital output types.

A system level calibration ensures that the performance of the transducer and instrumentation are operating as a system, together. A system level calibration and an associated certification proves the system pairing is functional and essentially plug-and-play ready.

The system level calibration is an important reference for traceability and troubleshooting for the entire system. It can help identify if a setting has been changed or if there is another issue that invalidated the system.

Interface can provide system level calibrations for load cells, torque transducers, multi-axis sensors and other measurement tools that are paired with indicators, amplifiers, USB, and digital instruments. Interface uses a very high quality NIST and NMI traceable mV/V transfer standard to ratiometrically scale or applied force to scale the system. We provide a separate digital indicator calibration certificate indicating how we scaled the instrument.

Interface guarantees our quality performance load cells, torque transducers, multi-axis sensors, and related instrumentation. We certify our products to meet or exceed the quality clauses outlined by the International Organization of Standardization (ISO).

Interface is A2LA Accredited for torque and force calibration in accordance with International Standard ISO/IEC 17025:2017.

From the time we designed our first load cells in 1968, we have been providing calibration solutions. We even calibrate other manufacturers load cells.  Every year, Interface performs more than 100,000 calibrations. Every transducer’s calibration data is stored at Interface, providing a permanent archive. We utilize NMI Certified Gold and Platinum Standard reference load cells and our Interface Gold Standard Calibration Software for all calibrations.

ADDITIONAL RESOURCES

Instrumentation Selection Guide

Top Five Reasons Why Calibration Matters

Recap of Accurate Report on Calibration

Regular Calibration Service Maintains Load Cell Accuracy

Shunt Calibration 101

Load Cell Basics Sensor Specifications

Regular Calibration Service Maintains Load Cell Accuracy

Even under ideal conditions with normal use, some new load cells can exhibit a slight improvement in accuracy over a period of time. In contrast, load cells are subject to performance degradation due mistreatment, drift, or aging. Throughout the life of a load cell, Interface recommends that regularly scheduled calibration and inspection to monitor performance and minimize uncertainty.

Calibration is a set of operations that compares the accuracy of a measuring instrument of any type, such as a load cell or torque transducer, against a recognized standard. It is often referenced as load cell characterization.

Calibration service ensures the transducer is performing to listed specification. It helps to avoid costly impacts resulting from invalid data or a load cell shutting down a test in progress. Confidence in data is critical in test and measurement. The calibration assures that measurements gathered within the valid calibration period are reliable, trustworthy, and defensible. To maintain  any sensor and minimize cost of poor quality, it is best practice that calibrations are scheduled annually to confirm accuracy to specifications.

There are times when loading conditions and use case environments necessitate the need for more frequent evaluation and calibration cycles. The process of calibration can include adjusting the measuring instrument to bring it in alignment with the standard.

Use Cases for Frequent Calibration Services

  • Harsh environmental conditions can cause corrosion and electrical failures
  • Loading forces that exceed the load cell rated capacity can cause shifting of the zero-load output of the load cell
  • Moment loading of the load cell can cause zero shifts and other undesirable behavior
  • High cycle rates or fatigue applications can cause premature failure

Many of these symptoms can be repaired or mitigated if they are identified early during appropriate evaluation and calibration cycles.

Interface standards for calibration are world-class. Our calibration labs are managed by experts in diagnostics, testing and repair with engineering and metrology grade equipment designed by the leaders in force measurement. Interface’s range of calibration service capabilities:

FORCE

  • NMI Traceable Calibration
  • 50g – 1 Million lbf Capacities
  • 11 Hydraulic and 6 Dead Weight Test Stands to Support Calibration Demand

TORQUE

  • .022 – 100K in lbf Capacities
  • NIST Traceable to 2.2K in lbf
  • NMI Traceable 2.2K – 100K in lbf

Why Interface Calibration Services?

  • ISO 17025 Accredited
  • 50+ Years of Calibration Experience
  • 100,000+ Calibrations Performed Annually
  • Permanently Archived Test Data
  • Highly Trained Professional Technicians
  • Quick and Timely Response
  • Calibrations Running 24/6

Our guidance is to schedule regular maintenance with an annual check-up. Interface offers world-class diagnostic, repair, and calibration services. You can schedule your calibration service online here.

 

Back to School Force Measurement Essentials

Interface has a long history of collaborating with colleges and universities around the world. From individual engineering students testing the force of launching miniature rockets to supplying onsite test labs with load cells and equipment for R&D, we are a resource for higher education learning and experimentation.

In our view, innovation and exploration have no boundaries. What validates new ideas and manifests problem solving requires modern and reliable tools that support student’s projects and activities. Its key to any program’s success. It is also why we are proud to be known around the globe as a leader in building and designing force measurement products that facilitate these initiatives through higher learning.

It is very inspiring to see new engineering students, future metrologists, and soon-to-be graduates designing new medical devices, creating new spacecraft and interplanetary vehicles, testing materials used for miniature consumer products and of course, building plenty of new robots and AI machines.

In our view, every university or college should have Interface force measurement products on hand to support these types of educational test and measurement research projects. Here is a simplified list of basic sensor products to get started.

Force Measurement Essentials for Higher Learning

  • Precision load cells in diverse designs and capacities
  • S-type load cells (load beams)
  • Miniature load cells and load buttons
  • Multi-axis sensors
  • Calibration grade equipment
  • Instrumentation
  • Wireless sensor technologies
  • Rotary and reaction torque transducers
  • Verification load frames

Our investment in supporting educational programs runs deep into our history as a company. You will find our founder’s name on the Richard F. Caris Mirror Lab at The University of Arizona. Following in his commitment to education, the Richard F. Caris Charitable Trust II continues to support STEM programs including sponsorship of the International Science and Engineering Fair (ISEF).

We drive to ensure that students who have a passion for science, technology and engineering have access to the best force measurement sensor technologies. It is why we offer a standard discount to all students and education institutions. You can learn more about our education support here. We know that learning requires the best tools, and we want to make sure that every student has the most accurate, quality and precision load cells available today.

As with all inquisitive minds, we thought it would be interesting to share what are other university and colleges buying for their learning programs and campus labs.

Top 10 products for testing projects and campus lab studies:

  1. 1200 LowProfile Load Cells are our most popular load cell, available in standard and high-capacity features.
  2. 1010 Load Cell model is a fatigue-rated low profile load cell in our 1000 product family, offering various capacities and functions.
  3. 2420 Load Cell is one of our stainless-steel standard and high-capacity load cells in our 2400 model series.
  4. 1500 Low-Capacity Load Cell designs are common requirements for applications where low sensitivity to eccentric load is important.
  5. WMC Sealed Stainless Steel Miniature Load Cell has an environmentally protected construction that comes in a variety of model capacities and configurations. It is great for small spaces and industrial applications.
  6. 3-Axis Load Cells are extremely popular multi-axis sensors designed to provide more testing data and often paired with BSC4 instrumentation. They are ideally suited for aerospace, robotics, automotive, and medical research testing applications.
  7. 6-Axis Load Cells are growing in popularity, for cost benefit and their unique ability to simultaneously measure Fx Fy Fz Mx My Mz.
  8. SSM Miniature Load Cells are one of many popular general-purpose s-type designed load cells. You call learn more about all our s-type models here.
  9. Torque Transducers of all types are used by university programs, engineering departments and metrology labs. There are many different options including rotary and reaction torque solutions. For all options, start here to choose the right one.
  10. Load Washer Load Cells are used because of the unique through-hole designs. They come in various models and dimensions, along with capacity options.

As with any project, the questions of what you want to measure, the applications, and where you are sending the data, are all core to choosing the sensor and instrumentation that is best suited for the learning environment or program.

Speaking of where to send the data for performance monitoring and analysis, the five most favorite types of instrumentation selected by university students and engineering labs include:

  1. DMA2 Signal Conditioner
  2. 9840 4-Channel Intelligent Indicator
  3. 9825 General Purpose Indicator
  4. BX8-AS BlueDAQ Series Data Acquisition System
  5. SGA AC/DC POWERED SIGNAL CONDITIONER

If you are heading back to school and thinking that it is time to revamp the testing lab or need new force measurement equipment, be sure to reach out to our education application engineers. They have years of experience and can help you get exactly what you need for your project and programs.

Be sure to tune into our Load Cell Basics, for answer to common questions about using these highly accurate sensors for your test and measurement projects. You can find all our Interface videos on our YouTube channel here.

If you are looking to explore more technical resources, be sure to go to our online support area and subscribe to our blogs for weekly updates.

ADDITIONAL EDUCATIONAL RESOURCES

Types of Force Measurement Tests 101

Torque Transducers 101

Multi-Axis Sensors 101

S-Type Load Cells 101

Mini Load Cells 101

Force Measurement Instrumentation 101

Load Washers 101

Couplings 101

Load Shackles 101

Load Pins 101

Tension Links 101

Load Button Load Cells 101

Strain Gages 101

Load Cell 101 and What You Need to Know

Calibration Systems 101

Force Measurement Accessories 101

TEDS 101

Shunt Calibration 101

 

Faces of Interface Featuring Sean Malone

In today’s Faces of Interface, we talked with Sean Malone who is responsible for calibrating and repairing our customer’s force measurement equipment. As our esteemed warranty coordinator, his important role requires extensive knowledge of force measurement technologies. This is because not only do we support the products we make, we also calibrate and repair force measurement products from a wide variety of other manufacturers.

Throughout his life, Sean has always had a propensity for working with his hands. Hi family owned a locksmith business, so he grew up to become very mechanically proficient. In fact, Sean worked for the 35-year family-run business for 25 years before the family decided to sell it. Sean also went to school at ITT Tech during that time and received his associates in computer networking and science.

After leaving the locksmith business, Sean investigated a new role where he could continue to work with his hands every day. This desire led him to Interface. He began his career at Interface as a repair technician in our production facility, then he moved on to become a calibration finalist, and the manager of the service department before settling into his current role as warranty coordinator.

His journey through Interface’s service department gave him a great deal of knowledge about the business and the ins and outs of a load cell. This allows him to perform his current role to the highest degree and aptitude. He’s also a great resource for questions and support for our team members and global network. His position today includes being a single point contact for service customers, performing root cause analysis, fixing load cells, calibrating them, and ensuring items sent in for services get back to the customer in premium working order.

Sean says that he’s caught his professional stride at Interface and really enjoys the fact that he is learning something new every day. He also remarked that the people he comes to work with make the job and the company that much more enjoyable. We’re glad to have you here too Sean, as you represent the best in ForceLeaders.

In his free time, you won’t find Sean anywhere else but at the golf course. Being an Arizona native, he has grown up with a passion for the U.S. golf capitol of the world and all it has to offer for an avid golfer. His skills in the sport also extend to a little bit of frisbee golf from time to time. All things golf, all the time. That’s the way Sean winds down.

We’re incredibly honored to have Sean on the team and his work is critical to keeping our customers products operating at the highest standards of accuracy and reliability, today and for many years to come.

To learn more about the outstanding team at Interface, check in to our blog each month for our Faces of Interface series.

Top Five Reasons Why Calibration Matters

Applied metrology is the measurement science developed in relation to manufacturing and other processes, ensuring the suitability of measurement instruments, their calibration, and quality control.

Calibration is the practice of evaluating and adjusting equipment to ensure precision and accuracy. Calibration for force measurement determines whether a sensor is working properly, as well if it needs repair or replacement.

Calibration is critical in the application of test and measurement because it provides controlled methods using equipment and systems that ensure reliability, accuracy, and quality.

We recently shared in our Accurate Report on Calibration seminar, the top five reasons why calibration matters. Below highlights each why.

#1 Reason Why Calibration Matters – Understanding Uncertainty

  • Measurement uncertainty is defined as an estimate of the range of measured values within which the true value lies or, alternatively, the degree of doubt about a measured value.
  • In every application, there will be an uncertainty requirement on the force measurement.
  • The equipment used to make the measurement must be traceable to a realization of the SI Newton unit of force within this required uncertainty.

#2 Reason Why Calibration Matters – Quality and Specifications

  • Calibration ensures the transducer is performing to listed specification.
  • It avoids costly impacts or escapes to manufactured goods and products.
  • Maintaining quality of manufactured device to original specifications is an important reason why calibration matters.
  • It certainly minimizes the cost of poor quality.

#3 Reason Why Calibration Matters – Minimize Downtime

  • Proactive maintenance will always take less time than reactive problem solving and repairs.
  • Identify and repair or replace system components before they fail through regular calibration.
  • Plan calibration intervals to minimize downtime, as a schedule is preventative maintenance.

#4 Reason Why Calibration Matters – Data Accuracy

  • All load cells are subject to potential performance degradation due to mistreatment or drift, impacting data integrity.
  • Pre and post test verification provide assurances in data validity.
  • Confidence in critical measurements is imperative.

#5 Reason Why Calibration Matters – Accreditation and Certifications

  • Calibrations provide adherence to quality management systems and requirements, especially ISO certifications and compliance.
  • It assures that measurements gathered within the valid calibration period are reliable, trustworthy, and defensible.
  • Traceability of measurement is guaranteed with certifications.

To start, every sensor Interface manufactures is calibrated and certified in our fully accredited calibration labs before it leaves our facilities. We do so under ISO 17025 standards with full NIST traceability for quality assurance. Annually, we provide more than 100,000 calibrations on force and torque measurement devices.

We also provide complete calibration services and repair on any sensor we make, as well as other manufacturer’s equipment. Our experienced calibration lab technicians offer a complete range of calibration services for load cells, torque transducers and other force measurement devices, including:

  • Scheduled Repairs for Ongoing Inventory Management
  • RMA Tracking and Permanent Archive of Test Data
  • Custom Calibration Services
  • Certification

Calibration is a necessity as any product can degrade, resulting in a decline in accuracy. Interface recommends every device go through a calibration service annually to maintain the integrity of the sensor performance. If you need assistance in scheduling a calibration service or requesting help, contact us here.

We also offer a range of calibration grade equipment for labs and to use for self-service calibration.  This includes our verification load frames, calibration systems, calibration grade load cells and lab instrumentation. Read Calibration Grade Load Cells and Systems and Additional Interface Calibration Grade Solutions to learn about these and other products.

ADDITIONAL RESOURCES

Recap of Accurate Report on Calibration

Interface Calibration 101

GS-SYS04 Gold Standard® Portable E4 Machine Calibration System

Shunt Calibration 101

Extending the Calibration Range of a Transducer

Calibration-and-Repair-Brochure-1