FORCE MEASUREMENT SOLUTIONS

Multicomponent Sensor Manual

Instruction Manual

FORCE MEASUREMENT SOLUTIONS

Table of Contents

Multicomponent Sensor 6AXX / 6ADF / 5ARXX. 1
Function of the 6AXX Multicomponent Sensors 4
Calibration matrix 4
Example of a calibration matrix (6AXX, 6ADF) 5
Matrix Plus for 6AXX / 6ADF sensors 6
Example of a calibration matrix "B" 6
Example of Fx. 6
Example of Fz 6
Offset of the origin. 7
Scaling of the calibration matrix. 7
Example of Fx. 7
Matrix 6×12 for $6 A X X$ sensors 7
Stiffness Matrix 9
Example of a stiffness matrix. 9
Calibration Matrix for 5ARXX Sensors 10
Commissioning of the sensor 10
Commissioning of the 6×12 sensor 11
Screenshots 12
Adding a force / moment sensor 12
Configuration as Master / Slave 13
Changelog 14

Function of the 6AXX Multicomponent Sensors

The set of 6AXX Multicomponent Sensors comprises six independent force sensors equipped with strain gauges.
Using the six sensor signals, a calculation rule is applied to calculate the forces within threespatial axes and the three moments around them.
The measurement range of the multicomponent sensor is determined:

- by the measurement ranges of the six independent force sensors, and
- by the geometrical arrangement of the six force sensors or via the diameter of thesensor.

The individual signals from the six force sensors cannot be directly associated with aspecific force or moment by multiplying with a scaling factor.
The calculation rule can be precisely described in mathematical terms by the cross product from the calibration matrix with the vector of the six sensor signals.
This functional approach has the following advantages:

- Particularly high rigidity,
- Particularly effective separation of the six components ("low cross-talk").

Calibration matrix

The calibration matrix \underline{A} describes the connection between the indicated output signals \underline{U} of the measurement amplifier on channels 1 to 6 (u1, u2, u3, u4, u5, u6) and components 1 to 6 ($\mathrm{Fx}, \mathrm{Fy}, \mathrm{Fz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$) of the load vector $\underline{\mathrm{L}}$.

Measured value: output signals u1, u2, ...u6 onchannels 1 to 6	output signal \underline{U}
Calculated value: forces Fx, Fy, Fz;moments $M x, M y, M z$	Load vector $\underline{\underline{L}}$
Calculation rule: Cross product	$\underline{L}=\underline{A} \times \underline{U}$

The calibration matrix Aij includes 36 elements, arranged in 6 rows ($\mathrm{i}=1 . .6$) and 6 columns(j=1..6).
The unit of the matrix elements is $\mathrm{N} /(\mathrm{mV} / \mathrm{V})$ in rows 1 to 3 of the matrix.
The unit of the matrix elements is $\mathrm{Nm} /(\mathrm{mV} / \mathrm{V})$ in rows 4 to 6 of the matrix.
The calibration matrix depends on the properties of the sensor and that of the measurementamplifier.

It applies for the BX8 measurement amplifier and for all amplifiers, which indicate bridge
output signals in mV / V.
The matrix elements may be rescaled in other units by a common factor via multiplication(using a "scalar product").

FORCE MEASUREMENT SOLUTIONS

The calibration matrix calculates the moments around the origin of the underlying coordinate system.
The origin of the coordinate system is located at the point where the z-axis intersects with the facing surface of the sensor.1) The origin and orientations of the axes are shown by an engraving on the facing surface of the sensor.

1) The position of the origin may vary with different 6AXX sensor types. The origin is
 documented in the calibration sheet. E.G the origin of 6A68 is in the center of the sensor.

Example of a calibration matrix (6AXX, 6ADF)

	$\begin{gathered} \mathrm{u} 1 \\ \text { in } \mathrm{mV} / \mathrm{V} \end{gathered}$	$\begin{gathered} \mathrm{u} 2 \\ \text { in } \mathrm{mV} / \mathrm{V} \end{gathered}$	$\begin{gathered} \mathrm{u} 3 \\ \text { in } \mathrm{mV} / \mathrm{V} \end{gathered}$	$\begin{gathered} \mathrm{u} 4 \\ \text { in } \mathrm{mV} / \mathrm{V} \end{gathered}$	$\begin{gathered} \mathrm{u} 5 \\ \text { in } \mathrm{mV} / \mathrm{V} \end{gathered}$	$\begin{gathered} \mathrm{u} 6 \\ \text { in } \mathrm{mV} / \mathrm{v} \end{gathered}$
Fx in $\mathrm{N} / \mathrm{mV} / \mathrm{V}$	-217.2	108.9	99.9	-217.8	109.2	103.3
Fy in $\mathrm{N} / \mathrm{mV} / \mathrm{V}$	-2.0	183.5	-186.3	-3.0	185.5	-190.7
Fz in $\mathrm{N} / \mathrm{mV} / \mathrm{V}$	-321.0	-320.0	-317.3	-321.1	-324.4	-323.9
Mx in Nm/mV/V	7.8	3.7	-3.8	-7.8	-4.1	4.1
My in Nm / mV/V	-0.4	6.6	6.6	-0.4	-7.0	-7.0
Mz in Nm/mV/V	-5.2	5.1	-5.1	5.1	-5.0	5.1

The force in the x-direction is calculated by multiplying and totalling up the matrix elementsof the first row a1j with the rows of the vector of the output signals uj.

```
Fx= -217.2 N/(mV/V) u1+ 108.9 N/(mV/V) u2 + 99.9 N/(mV/V) u3
    -217.8 N/(mV/V) u4+ 109.2 N/(mV/V) u5 +103.3 N/(mV/V) u6
```

For example: on all 6 measurement channels is $\mathrm{u} 1=\mathrm{u} 2=\mathrm{u} 3=\mathrm{u} 4=\mathrm{u} 5=\mathrm{u} 6=1.00 \mathrm{mV} / \mathrm{V}$ displayed. Then there is a force Fx of -13.7 N.
The force in the z direction is calculated accordingly by multiplying and summing the thirdrow of the matrix a3j with the vector of the indicated voltages uj:

```
Fz = -321.0 N/(mV/V) u1 -320.0 N/(mV/V) u2 -317.3 N/(mV/V) u3
    -321.1 N/(mV/V) u4 -324.4 N/(mV/V) u5 -323.9 N/(mV/V) u6.
```

FORCE MEASUREMENT SOLUTIONS

Matrix Plus for 6AXX / 6ADF sensors

When using the "Matrix Plus" calibration procedure, two cross products are calculated: matrix A x U + matrix B x U *

Measured values: output signals u1, u2, ... u6 atchannels 1 to 6	output signals $\underline{\mathrm{U}}$
Measured values are output signals as mixed products: u1u2, u1u3, u1u4, u1u5, u1u6, u2u3 of channels 1 to 6	output signals \underline{U}^{*}
Calculated value: Forces Fx, Fy, Fz;Moments Mx, My, Mz	Load vector $\underline{\underline{L}}$.
Calculation rule: Cross product	$\underline{L}=\underline{A} \times \underline{U}+\underline{B} \times \underline{U^{*}}$

Example of a calibration matrix "B"

	$\mathrm{u} 1 \cdot \mathrm{u} 2$ in $(\mathrm{mV} / \mathrm{V})^{\mathbf{2}}$	$\mathrm{u} 1 \cdot \mathrm{u3}$ in $(\mathrm{mV} / \mathrm{V})^{2}$	$\mathrm{u} \cdot \mathrm{u} 4$ in $(\mathrm{mV} / \mathrm{V})^{2}$	$\mathrm{u} 1 \cdot \mathrm{u} 5$ in $(\mathrm{mV} / \mathrm{V})^{2}$	$\mathrm{u} 1 \cdot \mathrm{u} 6$ in $(\mathrm{mV} / \mathrm{V})^{\mathbf{2}}$	$\mathrm{u} 2 \cdot \mathrm{u} 3$ in $(\mathrm{mV} / \mathrm{V})^{2}$
Fx in $\mathrm{N} /(\mathrm{mV} / \mathrm{V})^{\mathbf{2}}$	-0.204	-0.628	0.774	-0.337	-3.520	2.345
Fy in $\mathrm{N} /(\mathrm{mV} / \mathrm{V})^{\mathbf{2}}$	-0.251	1.701	-0.107	-2.133	-1.408	1.298
Fz in $\mathrm{N} /(\mathrm{mV} / \mathrm{V})^{\mathbf{2}}$	5.049	-0.990	1.453	3.924	19.55	-18.25
Mx in $\mathrm{Nm} /(\mathrm{mV} / \mathrm{V})^{\mathbf{2}}$	-0.015	0.082	-0.055	-0.076	0.192	-0.054
$\mathrm{My} \mathrm{in} \mathrm{Nm} /(\mathrm{mV} / \mathrm{V})^{\mathbf{2}}$	0.050	0.016	0.223	0.036	0.023	-0.239
Mz in $\mathrm{Nm} /(\mathrm{mV} / \mathrm{V})^{\mathbf{2}}$	-0.081	-0.101	0.027	-0.097	-0.747	0.616

The force in the x-direction is calculated by multiplying and summing the matrix elements Aof the first row a1j with the rows j of the vector of the output signals uj plus matrix elements B of the first row a1j with the rows j of the vector of the mixedquadratic output signals:

Example of Fx

```
Fx=-217.2 N/(mV/V) u1 + 108.9 N/(mV/V) u2 + 99.9 N/(mV/V) u3
    -217.8 N/(mV/V) u4 + 109.2 N/(mV/V) u5 +103.3 N/(mV/V) u6
    -0.204 N/(mV/V ) 2 ulu2 - 0.628 N/(mV/V) 2 ulu3 + 0.774 N/ (mV/V) 2 ulu4
    -0.337 N/(mV/V) 2 ulu5-3.520 N/(mV/V) 2 ulu6 + 2.345 N/(mV/V) 2 u2u3
```


Example of Fz

```
Fz = -321.0 N/(mV/V) u1 -320.0 N/(mV/V) u2 -317.3 N/(mV/V) u3
    -321.1 N/(mV/V) u4 -324.4 N/(mV/V) u5 -323.9 N/(mV/V) u6.
    +5.049 N/(mV/V) 2 u1u2 -0.990 N/ (mV/V) 2 ulu3 +1.453 N/(mV/V) 2 ulu4
    +3.924 N/(mV/V) 2 ulu5 +19.55 N/(mV/V) 2 ulu6 -18.25 N/(mV/V) 2 u2u3
```

Attention: The composition of the mixed quadratic terms may change depending on the sensor.

FORCE MEASUREMENT SOLUTIONS

Offset of the origin

Forces which are not applied in the origin of the coordinate system are shown by anindicator in the form of Mx, My and Mz moments based on the lever arm.
Generally speaking, the forces are applied at a distance z from the facing surface of the sensor. The location of the force transmission may also be shifted in x - and z directions asrequired.

If the forces are applied at distance x, y or z from the origin of the coordinate system, and themoments around the offset force transmission location need to be shown, the following corrections are required:

```
Corrected moments Mx1, My1, Mz1
followinga shift in force transmission (x,y,z)
from the origin
```

```
Mx1 = Mx + y*Fz-z*Fy
My1 = My + z*Fx- x*Fz
Mz1 = Mz + x*Fy - y*Fx
```

Note: The sensor is also exposed to the moments Mx , My and Mz , with moments Mx 1, My1 and Mz1 displayed. The permissible moments Mx, My and Mz must not be exceeded.

Scaling of the calibration matrix

By referring the matrix elements to the unit mV / V, the calibration matrix can be applied to allavailable amplifiers.
The calibration matrix with the N/V and Nm/V matrix elements applies to the BSC8 measuring amplifier with an input sensitivity of $2 \mathrm{mV} / \mathrm{V}$ and an output signal of 5 V with a $2 \mathrm{mV} / \mathrm{V}$ input signal.
Multiplication of all matrix elements by a factor of $2 / 5$ scales the matrix from $\mathrm{N} /(\mathrm{mV} / \mathrm{V})$ and $\mathrm{Nm} /(\mathrm{mV} / \mathrm{V})$ for an output of 5 V at an input sensitivity of $2 \mathrm{mV} / \mathrm{V}$ (BSC8).
By multiplying all matrix elements by a factor of $3.5 / 10$, the Matrix is scaled from $\mathrm{N} /(\mathrm{mV} / \mathrm{V})$ and $\mathrm{Nm} /(\mathrm{mV} / \mathrm{V})$ for an output signal of 10 V at an input sensitivity of $3.5 \mathrm{mV} / \mathrm{V}$ (BX8)

The unit of the factor is (mV / V) $/ \mathrm{V}$
The unit of the elements of the load vector ($u 1, u 2, u 3, u 4, u 5, u 6$) are voltages in V

Example of Fx

Analog output with BX8, input sensitivity $3.5 \mathrm{mV} / \mathrm{V}$, output signal 10V:

```
Fx = 3.5/10 (mV/V)/V
    (-217.2 N/(mV/V) u1 + 108.9 N/ (mV/V) u2 + 99.9 N/(mV/V) u3
    -217.8 N/ (mV/V) u4 + 109.2 N/(mV/V) u5 +103.3 N/(mV/V) u6
    ) +
    (3.5/10) 2 ( (mV/V)/V ) 2
    (-0.204 N/ (mV/V) 2 ulu2 - 0.628 N/ (mV/V) 2 ulu3 + 0.774 N/(mV/V) 2 ulu4
    -0.337 N/(mV/V) 2 ulu5 - 3.520 N/(mV/V) 2 ulu6 + 2.345 N/(mV/V) 2 u2u3
    )
```


Matrix 6x12 for 6AXX sensors

With the sensors 6A150, 6A175, 6A225, 6A300 it is possible to use a 6×12 matrix instead of a6x6 matrix for error compensation.

The 6×12 matrix offers the highest accuracy and the lowest crosstalk, and is recommendedfor sensors from 50 kN force.

In this case, the sensors have a total of 12 measuring channels and two connectors. Each connector contains an electrically independent force-torque sensor with 6 sensor signals.Each of these connectors is connected to its own measuring amplifier BX8.
Instead of using a 6×12 matrix, the sensor can also be used exclusively with connector A, orexclusively with connector B, or with both connectors for redundant measurement. In this case, a 6×6 matrix is supplied for connector A and for connector B. The 6x6 matrix is supplied as a standard.

The synchronization of the measured data can be e.g. with the help of a synchronizationcable. For amplifiers with EtherCat interface a synchronization via the BUS lines is possible.
The forces Fx, Fy, Fz and moments Mx, My, Mz are calculated in the software BlueDAQ. There the 12 input channels u1...u12 are multiplied by the 6×12 matrix A to get 6 output channels of the load vector L.

The channels of connector "A" are assigned to channels $1 . .6$ in the BlueDAQ software.. The channels of connector " B " are assigned to channels $7 . . .12$ in the BlueDAQ software.
After loading and activating the matrix 6×12 in the BlueDAQ software, the forces and moments are displayed on channels 1 to 6 .
Channels $7 . . .12$ contain the raw data of connector B and are not relevant for further
 from the display and the recording via the function "Channel"--> "Hide".
When using the 6×12 matrix, the forces and moments are calculated exclusively by software,since it is composed of data from two separate measuring amplifiers.
Tip: When using the BlueDAQ software, the configuration and linking to the 6×12 matrix can
be done by "Save Session". and "Open Session" is pressed. so that the sensor and channel configuration only has to be carried out once.

Stiffness Matrix

The stiffness matrix is defined by:

$$
f=\underline{S} * \underline{u}
$$

With the load vector $\mathrm{f}: \quad \underline{f}=$
$=\left|\begin{array}{l}F_{x} \\ F_{y} \\ F_{z} \\ M_{x} \\ M_{y} \\ M_{z}\end{array}\right|$, the shifts vector u:

and with the stiffness matrix $\mathrm{S}: \underline{S}=\left\lvert\, \begin{array}{llllll}c_{11} & c_{12} & c_{13} & c_{14} & c_{15} & c_{16} \\ c_{21} & c_{22} & c_{23} & c_{24} & c_{25} & c_{26} \\ c_{31} & c_{32} & c_{33} & c_{34} & c_{35} & c_{36} \\ c_{41} & c_{42} & c_{43} & c_{44} & c_{45} & c_{46} \\ c_{51} \\ c_{52} & c_{53} & c_{54} & c_{55} & c_{56} & c_{61}\end{array} c_{62}\right.$,
The forces $\quad F_{i}$ have the unit N or kN
The moments M_{i} have the unit kNm , or Nm or
NmmThe shifts u_{i} have the unit m or mm
The angle \square_{i} are expressed in radians
The stiffness matrix is

$$
c_{i j}=c_{j i}
$$

symmetric:
Example of a stiffness matrix
6 A130 5kN/500Nm

Fx	Fy	Fz	Mx	My	Mz	
93,8 kN/mm	0,0	0,0	0,0	3750 kN	0,0	Ux
0,0	$93,8 \mathrm{kN} / \mathrm{mm}$	0,0	-3750 kN	0,0	0,0	Uy
0,0	0,0	$387,9 \mathrm{kN} / \mathrm{mm}$	0,0	0,0	0,0	Uz
0,0	-3750 kN	0,0	$505,2 \mathrm{kNm}$	0,0	0,0	phix
3750 kN	0,0	0,0	0,0	505,2 kNm	0,0	phiy
0,	00	00		0	$343,4 \mathrm{kNm}$	phiz

 twist of $5 \mathrm{kN} / 3750 \mathrm{kN}=0.00133$ rad results in the y -direction
When loaded with 15 kN in z-direction, a shift of $15 / 387.9 \mathrm{~mm}=0.039 \mathrm{~mm}$ in the z direction(and no twist).
When Mx 500 Nm a twisting of $0,5 \mathrm{kNm} / 505,2 \mathrm{kNm}=0.00099$ rad results in the x -axis, and ashift from $0,5 \mathrm{kNm} /-3750 \mathrm{kN}=-0,000133 \mathrm{~m}=-0,133 \mathrm{~mm}$.
When loaded with Mz 500 Nm a twisting results of $0,5 \mathrm{kNm} / 343.4 \mathrm{kNm}=0.00146$ rad about

FORCE MEASUREMENT SOLUTIONS
the z -axis (and no shift).

Calibration Matrix for 5AR Sensors

The sensors of the type 5AR allow the measurement of the force Fz and the moments Mxand My.
The sensors 5AR may be used for displaying 3 orthogonal forces Fx, Fy, and Fz, when the measured torques are divided by the lever arm z (distance of force application Fx, Fy of theorigin of the coordinate system).

	ch1	ch2	ch3	ch4
Fz in N / mV/V	100,00	100,00	100,00	100,00
Mx in Nm / mV/V	0,00	$-1,30$	0,00	1,30
My in Nm / mV/V	1,30	0,00	$-1,30$	0,00
H	0,00	0,00	0,00	0,00

The force in the z direction is calculated by multiplying and summing the matrixelements ofthe firstrow A1J with the lines of the vector of the outputsignals uj
$\mathrm{Fz}=100 \mathrm{~N} / \mathrm{mV} / \mathrm{V}$ u1 $+100 \mathrm{~N} / \mathrm{mV} / \mathrm{V}$ u2 $+100 \mathrm{~N} / \mathrm{mV} / \mathrm{V} \mathrm{u} 3+100 \mathrm{~N} / \mathrm{mV} / \mathrm{V}$ u4
Example: on all 6 measurement channels is $u 1=u 2=u 3=u 4=1.00 \mathrm{mV} / \mathrm{V}$ displayed. Then aforce Fzresults of 400 N .

The calibration matrix A of 5AR sensor has the dimensions 4 x .4
The vector u of the output signals of the measuring amplifier has the dimensions $4 x .1$ The result vector ($\mathrm{Fz}, \mathrm{Mx}, \mathrm{My}, \mathrm{H}$) has the dimension of 4 x .1
At the outputs of ch1, ch2 and ch3 after applying the calibrationmatrix, the forceFz and the moments Mxand My are displayed. On the Channel 4 output H is constantly displayed 0 V bythe fourth line.

Commissioning of the sensor

The BlueDAQ software is used to show the measured forces and moments. The BlueDAQsoftware and related manuals can be downloaded from the website.

Step	Description
1	Installation of the BlueDAQ software
2	Connect the measuring amplifier BX8 via USB port; Connect the sensor 6AXX to the measuring amplifier. Switch on the measuring amplifier.
3	Copy directory with calibration matrix (supplied USB stick) to suitable drive and path.
4	Start BlueDAQ software
5	Main window: Button AddChannel;

Step	Description
	Select device type: BX8 Select interface: for example COM3Select channel 1 to 6 to open Button Connect
6	main window: Button Special Sensor Select six axis sensor
7	Window "Six-axis sensor settings: Button Add Sensor
8	a) Button Change Dir Select the directory with the files Serial number.dat and Serialnumber.matrix. b) Button Select Sensorand select Seial number c) Button Auto Rename Channels d) if necessary. Select the displacement of the force application point. e) Button OKEnable this Sensor
9	Select Recorder Yt" window, start measurement;

Commissioning of the 6×12 sensor

When commissioning the 6×12 sensor, channels 1 to 6 of the measuring amplifier atconnector "A" must be assigned to components 1 to 6 .
Channels $7 . . .12$ of the measuring amplifier at connector " B " are assigned to components 7to 12.

When using the synchronization cable, the 25-pin SUB-D female connectors (male) on theback of the amplifier are connected to the synchronization cable.
The synchronization cable connects the ports no. 16 of the measuring amplifiers A and Bwith each other.

For amplifier A port 16 is configured as output for the function as master, for amplifier Bport 16 is configured as input for the function as slave.

The settings can be found under "Device" \rightarrow Advanced Setting" \rightarrow Dig-IO.
Hint: The configuration of the data frequency must be done at the "Master" as well as at the "Slave". The measuring frequency of the master should never be higher than the measuring frequency of the slave.

FORCE MEASUREMENT SOLUTIONS.

Screenshots

Adding a force / moment sensor

॥ncerface Multi-axis Sensor

OK Enable this sensor

minerface Multi-axis Sensor

FORCE MEASUREMENT SOLUTIONS.

Configuration as Master / Slave

